با همکاری انجمن علمی گیاهان دارویی ایران

نوع مقاله : مقاله علمی کوتاه

نویسندگان

1 کارشناس ارشد زراعت، دانشگاه تربیت مدرس

2 دانشیار گروه زراعت، دانشگاه تربیت مدرس

چکیده

 آزمایشی در قالب طرح فاکتوریل و در چهار تکرار در گلخانه دانشکده کشاورزی دانشگاه تربیت مدرس انجام شد. در این آزمایش اثر پیش‌تیمار غلظت‌های صفر، 40، 80 و 120 پی‌پی‌ام محلول نانو نقره و بر‌هم‌کنش این تیمارها با شرایط تنش غرقابی و عدم تنش غرقابی بر روی ریشه‌های زعفران موردبررسی قرار گرفت. در شرایط بدون تنش غلظت‌های 40‌‌ و 80 پی‌پی‌ام نانو نقره تعداد ریشه را افزایش داد، ‌‌اما طول ریشه با پیش‌ تیمارهای آب و نانو نقره 40 پی‌پی‌ام در سطح اطمینان ‌ 99‌ درصد افزایش پیدا کرد. در شرایط تنش غرقابی کاربرد غلظت‌های 40‌ و‌80 پی‌پی‌ام اثر تنش را بر تعداد ریشه جبران کرد و کاربرد غلظت 40 پی‌پی‌ام نه‌تنها موجب جبران اثر تنش روی طول ریشه شد، بلکه میزان این صفت را به بیشتر از میزان آن در شرایط شاهد بدون تنش افزایش داد. همچنین کلیه پیش‌تیمارها موجب جبران اثر تنش بر وزن خشک و وزن تر ریشه شدند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of nano-silver on root and bud growth of saffron in flooding stress condition

نویسندگان [English]

  • Nasim Rezvani 1
  • Ali Sorooshzadeh 2

1 M.Sc. in Agronomy, Zanjan Agricultural and Natural Resources Research Center

2 Associate Professor, Agronomy Department, University of Tarbiat Modares, Tehran, Iran

چکیده [English]

Saffron (Crocus sativus L.) is cultivated as spices, medicinal and aromatic plant species. At autumn season, heavy rainfall can cause flooding stress and inhibits growth of saffron. Thus this research was conducted to study the effect of silver ion (as an ethylene inhibitor) on growth of saffron under flooding conditions. The corms of saffron were soaked with one concentration of nano silver (0, 40, 80 or 120 ppm) and then planting under flooding stress and non flooding stress conditions. Results showed that number of roots, root length, root fresh and dry weight, leaves fresh and dry weight were reduced by 10 day flooding stress. Soaking saffron corms with 40 or 80 ppm concentration of nano silver rewarded the effect of flooding stress on the root number, by increasing it. Furthermore, 40 ppm of nano silver increased root length in stress. Nano silver 80 ppm in flooding stress, increased leaves dry weight.

کلیدواژه‌ها [English]

  • Corm
  • Flooding stress
  • nano silver
  • Root dry weight
  • Root length
  • Saffron
Abeles, F.B. 1973. Ethylene in plant biology. Ant Cell Reports 20(6): 547-555.
An, J., Zhang, M., Wang, S.H., and Tang, J. 2008. Physical, chemical and microbiological change in stored green asparagus spears as affected by coating of silver nanoparticle-pvp. LWT - Food Science and Technology 41(6): 1100-1107.
Bais, H.P., Sudha, G.S., and Ravishankar, G.A. 2001a. Influence of putrescine AgNO3 and polyamine inhibitors on the morphogenetic response in untransformed and transformed tissues of Chichorium intybus and their regenerants. Plant Cell Reports 20(6): 547-555.
Bais, H.P., Sudha, G.S., and Ravishankar, G.A. 2001b. Putrescine influences growth and production of coumarins in transformed and untransformed root cultures of witloof chicory (Chichorium intybus L. cv lucknow local). Acta Physiologia Plantarum 23(3): 319-327.
Bais, H.P., Sudha, G., Suresh, B., and Ravishankar, G.A. 2000. AgNO3 influences in vitro root formation in Decalepis hamiltonii Wight. Current Science 79(3): 894-898.
Bais, H.P., Venkatesh, R.T., Chandrashekar, A., and Ravishankar, G.A. 2001c. Agrobacterium rhizogenes mediated transformation of witl of chiocory in vitro shoot regeneration and induction of flowering. Current Science 80: 83-87.
Beyer, E.M. 1976a. A potent inhibitor of ethylene action in plants. Plant Physiology 583:268-271.
Beyer, E.M. 1976b. Silver ion: a potent anti-ethylene agent in cucumber and tomato. HortScience 11(3): 175-196.
Biddington, N.L. 1992. The influence of ethylene in plant tissue culture. Plant Growth Regulation 11(2):173-178.
Biemelt, S., Hajirezai, M.R., and Melzer, M. 1999. Sucrose synthase activity does not restrict glycolysis in roots of transgenic potato plants under hypoxic conditions. Planta 210: 41–49.
Bradford, K.J. 1983. Effect of soil flooding on leaf gas exchange of plants. Plant Physiol 73(2): 475–479.
Bradford, K.J., and Dilley, D.R. 1978. Effects of root anaerobiosis on ethylene production, epinasty and growth of tomato plants. Plant Physiol 61(4): 506–509.
Chamani, A.E., Khalighi, B.A., Joyce, A.C., Donald, E., Irving, A., Zamani, B., Mostofi, B., and Kafi, B.M. 2005. Ethylene and anti-ethylene treatment effects on cut ‘First Red’ rose. Horticulture 7(1): 3-7.
Chraibi, B.K.M., Latche, A., Raustan, J.P., and Fallot, J. 1991. Stimulation of shoot regeneration from cotyledons of Helianthus annuus by ethylene inhibitors silver and cobalt. Plant Cell Reports 10(4): 204-207.
Crawford, R.M.M., and Andle, R.B. 1996. Oxygen deprivation stress in a changing environment. Journal of Experimental Botany 47: 145–159.
Eo, J., and Lee B.Y. 2009. Effects of ethylene, abscisic acid and auxin on fruit abscission in water dropwort (Oenanthe stolonifera DC.). Scientia Horticulturae 123(2): 224-227.
Gad, N., and Atta-Aly, M.A. 2006. Effect of cobalt on the formation, growth and development of adventitious roots in tomato and cucumber cuttings. Science Research 2(7): 423-429.
Ganesh, S.D., and Sreenath, H.L. 1996. Silver nitrate enhanced shoot development in cultured apical shoot buds of Coffea arabica cv cauvery. Journal of Plantation Crops 24(1): 577-580.
Giridhar, P., Indu, E.P., Vijaya ramu, D., and Ravishankar, G.A. 2003. Effect of silver nitrate on in vitro shoot growth of Coffee. Tropical Science 43(3): 144-146.
Gravatt, D.A., and Kirby, C.J. 1998. Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiology 18(6): 411–417.
Grichko, P.V., and Glick, R. 2001. Ethylene and flooding stress in plants, Plant Physiology and Biochemistery 39(1): 1−9.
Hongjun, R.G., Qualls, C., and Robert Blank, R. 2005. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquatic Botany 82(4): 250–268.
Jackson, M.B., and Campbell, D.J. 1976. Waterlogging and petiole epinasty in tomato: The role of ethylene and low oxygen. New Phytology 76(2): 21–29.
Jackson, M.B., Gales, K., and Campbell, D.J. 1978. Effect of waterlogged soil conditions on the production of ethylene and on water relationships in tomato plants. Journal of Experimental Botany 29(4): 83–193.
Keyhani, E., and keyhani, J. 2004. Hypoxiya/anoxia as signaling for increased alcohol dehydrohenase activity in saffron corm. Annals New York Academy of Science 1030:449-457.
Kushad, M.M., and Poovaiah, B.W. 1984. Deferal of senescence and abscission by chemical inhibition of ehtylene synthesis and action in bean explants. Plant Physiology 76(2):293-296.
Mishra, A., Khare, S., Trivedi, P.K., and Nath, P. 2008. Effect of ethylene, 1- MCP, ABA and IAA on break strength, cellulose and polygalacturonase activities during cotton leaf abscission. South Africa Journal of Botanica 282(2):6-12.
Molina, R.V., Valero, M., and Navarro, Y. 2005. Temperature effects on flower formation in saffron (Crocus sativus L.). Scientia Horticulturae 103:361–379.
Ouma, J.P., Young, M.M., and Reichert, N.A. 2004. Optimization of in vitro regeneration of multiple shoots from hypocotyl sections of cotton (Gossypium hirsutum L.). African Journal of Biotechnology 3(3): 169-173.
Pallas, J.R., and Kays, S.J. 1982. Inhibition of photosynthesis by ethylene a stomatal effect. Plant Physiology 70(2):598–601.
Perata, P., and Alpi, A. 1993. Plant responses to anaerobiosis. Plant Science 93:1–17.
Pezeshiki, S.R., DeLaune, A.D., Klude, H.K., and Choi, H.S. 1996. Photosynthesis and growth responses of cattail (Typha domingensis) and sawgrass (Cladium jamaicense) to soil redox conditions. Aquatic Botany 54(1):25–35.
Pua, E.C., and Chi, G.L. 1993. De novo shoot morphogenesis and plant growth of mustard (Brassica juncea L.) in vitro in relation to ethylene. Physiologia Plantarum 88(3):467-474.
Rangahau, M.K. 2003. Growing saffron - The world’s most expensive spice. Crop and Food Research 20:1-4.
Reggiani, R. 2006. A role for ethylene in low-oxygen signaling in rice roots. Amino Acids 30(3):31–38.
Roustan, J.P., Latche, A. and Fallot, J. 1990. Control of carrot somatic embryogenesis by AgNO3 and inhibitor of ethylene action effect on arginine decarboxilase activity. Plant Science 67(1):89-95.
Seif Sahandi, M., Sorooshzadeh, A., Rezazadeh, H., and Naghdiabadi, H.A. 2011. Effect of nano silver and silver nitrate on seed yield of borage. Journal of Medicinal Plants Research 5(2):171-175. (In Persian).
Sharon, M., Choudhary, A.Kr., and Kumar, R. 2010. Nanotechnology in agricultural diseases and food safety. Journal of Phytology 2(4):83–92.
Sunandakumari, C., Martin, K.P., Chithra, M., and Madhusoodanan, P.V. 2004. Silver nitrate induced rooting and flowering in vitro on rare rhoeophytic woody medicinal plant, Rotula aquatica Lour. Indian of Biotechnology 3(3): 418-421.
Tang, Z.C., and Kozlowski, T.T. 1982. Some physiological and morphological responses of Quercus macrocarpa L. seedlings to flooding. Canadian Journal of Forest Research 12(2):196–202.
Topa, M.A., and Cheeseman, J.M. 1992. Carbon and phosphorus partitioning in Pinus serotina seedlings growing under hypoxic and low-phosphorus conditions. Tree Physiol 10(2):95–207.
Turhan, H. 2004. The effect of silver nitrate (Ethylene inhibitor) on in vitro shoot development in potato (Solanum tuberosum L.), Biotechnology 3(1):72-74.
Turkova, N.S. 1944. Growth reactions in plants under excessive watering, Dokl. Academy science 42(3):87–90.
Visser, E.J.W., and Pierik, R. 2007. Inhibition of root elongation by ethylene in wetland and non-wetland plant species and the impact of longitudinal ventilation. Plant Cell Environ 30 (1):31–38.
Visser, E.J.W., Nabben, R.H.M., Blom, C.W.P.M., and Voesenek, L.A.C.J. 1997. Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. Plant Cell Environment. 20:647–653.
Wample, R.L., Thornton, R.K. 1984. Differences in the responses of sunflower (Helanthus annuus L.) subjected to flooding and drought stress. Physiology Plant 61(4):611–616.
Wang, K.L., Hai, C.L., and Ecker, J.R. 2002. Ethylene biosynthesis and signaling networks. Plant Cell. 14:S131-S151 Supplement.