بخش‌بندی منفعتی بازار زعفران ایران با استفاده از الگوریتم‌های خوشه‌بندی قطعی و فازی در مشهد

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دکتری اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 استاد گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.

4 استادیار گروه جامعه شناسی، دانشکده ادبیات و علوم انسانی، دانشگاه فردوسی مشهد، مشهد، ایران.

5 مدیر واحد تحلیل استراتژیک، دانشگاه موناش استرالیا

10.22048/jsat.2020.225513.1388

چکیده

زعفران یکی از محصولات کشاورزی مهم و ارزشمند ایران به شمار می­رود و برای رشد بازار آن لازم است که به ترجیحات مصرف­کنندگان این محصول توجه شود. مصرف­کنندگان دارای نیازها و خواسته­های متفاوتی می­باشند و با بخش­بندی منفعتی بازار زعفران، شرکت­ها می­توانند از ترجیحات مصرف­کنندگان در هر بخش از بازار درک صحیحی داشته باشند. لذا، در این مطالعه با بکارگیری الگوریتم­های خوشه­بندی قطعی و فازی، بازار زعفران به بخش­های همگن تقسیم و سپس با استفاده از نتایج تحلیل متقارن؛ ترجیحات، نگرش و خصوصیات جمعیت­شناختی مصرف­کنندگان در هر یک از بخش­های بازار مورد بررسی قرار گرفت. در این مطالعه، اطلاعات مربوط به 400 پاسخ­دهنده با استفاده از روش نمونه­گیری طبقه­ای از 13 منطقه مشهد جمع­آوری گردید. نتایج مطالعه نشان داد که بازار زعفران را می­توان به شش بخش همگن تقسیم نمود و الگوریتم خوشه­بندی فازی C-means در مقایسه با روش­های قطعی K-means، K-medoids و روش­های فازی گوستافسون-کسل و گت-گوا دارای عملکرد بهتری در شناسایی خوشه­ها می­باشد. مطابق با یافته­های مطالعه، در اغلب بخش­های بازار، وزن زعفران و نوع بسته­بندی مهمترین ویژگی­های اثرگذار بر تصمیمات خرید می­باشند. بر اساس نتایج مطالعه، به شرکت­های زعفرانی توصیه می­گردد که در عرضه محصولات زعفرانی و تدوین استراتژی­های بازاریابی به ترجیحات مصرف­کنندگان در بخش­های مختلف بازار توجه نمایند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Benefit Segmentation of Iranian Saffron Market Using Crisp and Fuzzy Clustering Algorithms in Mashhad

نویسندگان [English]

  • Amirhossein Tohidi 1
  • Mohammad Ghorbani 2
  • Alireza Karbasi 3
  • Ahmadreza Asgharpourmasouleh 4
  • Behrooz Hassani-Mahmooei 5
1 Ph.D of Agricultural Economics, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Professor of Agricultural Economics, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Professor of Agricultural Economics, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
4 Assistant Professor of Sociology, Faculty of Letters and Humanities, Ferdowsi University of Mashhad, Mashhad, Iran
5 Strategic Intelligence and InSights Unit, Monash University, Australia
چکیده [English]

Saffron is one of the most valuable and important agricultural products in Iran, and, it is necessary to consider the preferences of consumers to develop its market. Consumers have different needs and wants, and by benefit segmenting the saffron market, companies can understand customers' preferences in each segment of the market correctly. Therefore, in this study, using the crisp and fuzzy clustering algorithms, the saffron market was divided into homogenous segments, and then, using the results of the conjoint analysis; consumer preferences, attitudes, and demographic characteristics were examined in each saffron market segment. The necessary data were collected from 400 respondents using a stratified sampling method from 13 districts of Mashhad, Iran. The results of this study showed that the saffron market could be divided into six homogeneous segments, and the fuzzy C-means clustering algorithm performs better at finding clusters than k-means, k-medoids, fuzzy Gustafson-Kessel and fuzzy Gath-Geva methods. According to the study findings, in most market segments, the weight of saffron and the packaging type are the most important attributes influencing purchase decisions. Based on the study results, it is suggested that saffron companies consider consumer preferences in different market segments when supplying saffron products and formulating marketing strategies.

کلیدواژه‌ها [English]

  • Consumer Preferences
  • Marketing Management
  • Market Segmentation
 
 
Adegbola, Y.P., Ahoyo Adjovi, N.R., Adekambi, S.A., Zossou, R., Sonehekpon, E.S., Assogba Komlan, F., and Djossa, E. 2019. Consumer preferences for fresh tomatoes in Benin using a conjoint analysis. Journal of International Food and Agribusiness Marketing31 (1): 1-21.
Alphonce, R., and Alfnes, F. 2012. Consumer willingness to pay for food safety in Tanzania: an incentive-aligned conjoint analysis. International Journal of Consumer Studies36 (4): 394-400.
Asghari Lafmejani, S., and Eizadi, A. 2017. Investigation of saffron role in job creation for rural families (Case study: Roshtkhar Rural District). Journal of Saffron Research4 (2): 210-228.
Delley, M., and Brunner, T.A. 2020. A segmentation of Swiss fluid milk consumers and suggestions for target product concepts. Journal of Dairy Science103 (4): 3095-3106.
Denver, S., Jensen, J.D., Olsen, S.B., and Christensen, T. 2019. Consumer preferences for ‘localness’ and organic food production. Journal of Food Products Marketing25 (6): 668-689.
Dourandish, A., Tohidi, A., and Alizadeh, P. 2017. Ranking factors affecting the packing of saffron from the perspective of consumers. Saffron Agronomy and Technology5 (2): 175-184.
Erilli, N.A. 2019. Comparison of fuzzy clustering methods in economic freedom ranking in Asia-Pacific. Journal Perspektif Pembiayaan dan Pembangunan Daerah7 (2): 157-168.
Farahmand, K., Daneshvar Kakhaki, M., Shahnooshi, N., Ghasemi, V., and Hemmati Kakhaki, A. 2013. Factors affecting market development of saffron using Fuzzy Delphi. Agricultural Economics6 (3): 97-119.
Foerster, M., and Röösli, M. 2017. A latent class analysis on adolescents media use and associations with health related quality of life. Computers in Human Behavior71: 266-274.
Ghorbani, M., Alizadeh, P., and Tohidi, A. 2019. The effect of awareness of organic products characteristics on household’s willingness to consume organic saffron in future in Mashhad county of Iran. Agricultural Economics and Development27 (106): 31-53.
Gosine, L., and McSweeney, M.B. 2019. Consumers’ attitudes towards alternative grains: a conjoint analysis study. International Journal of Food Science and Technology54 (5): 1588-1596.
Grim, J., and Hora, J. (2007). Minimum Information Loss Cluster Analysis for Categorical Data. Paper Presented at the Machine Learning and Data Mining in Pattern Recognition, Berlin, Heidelberg.
Grunert, K.G. 2019. International segmentation in the food domain: Issues and approaches. Food Research International115: 311-318.
Hossein Morshedy, A., Torabi, S.A., and Memarian, H. 2019. A hybrid fuzzy zoning approach for 3-dimensional exploration geotechnical modeling: a case study at Semilan dam, southern Iran. Bulletin of Engineering Geology and the Environment78 (2): 691-708.
Janssen, M., Schäufele, I., and Zander, K. 2020. Target groups for organic wine: The importance of segmentation analysis. Food Quality and Preference79: 1-11.
Jantzi, H.A., and McSweeney, M.B. 2019. An overview of wine consumers in Nova Scotia, Canada: A conjoint analysis study. Journal of Wine Research30 (1): 48-61.
Machiels, C.J.A., Yarar, N., and Orth, U.R. 2019. Symbolic Meaning in Beverage Packaging and Consumer Response. Academic Press.
Mahbubi, A., Uchiyama, T., and Hatanaka, K. 2019. Capturing consumer value and clustering customer preferences in the Indonesian halal beef market. Meat Science156: 23-32.
Meyerding, S.G.H., Trajer, N., and Lehberger, M. 2019. What is local food? The case of consumer preferences for local food labeling of tomatoes in Germany. Journal of Cleaner Production207: 30-43.
Mohammadi, H., and Reed, M. 2020. Chapter 22 - Saffron Marketing: Challenges and Opportunities. In A. Koocheki & M. Khajeh-Hosseini (eds.), Saffron (pp. 357-365): Woodhead Publishing.
Mota, V.C., Damasceno, F.A., and Leite, D.F. 2018. Fuzzy clustering and fuzzy validity measures for knowledge discovery and decision making in agricultural engineering. Computers and Electronics in Agriculture150: 118-124.
Naughton, P., McCarthy, M., and McCarthy, S. 2017. Reducing consumption of confectionery foods: A post-hoc segmentation analysis using a social cognition approach. Appetite117: 168-178.
Pirmalek, F., Karbasi, A.R., Ghorbani, M., and Rastegaripour, F. 2017. Management strategies for production, processing and marketing of saffron in Khorasan Razavi. Agricultural Economics Research9 (35): 207-228.
Rabadán, A., Díaz, M., Brugarolas, M., and Bernabéu, R. 2020. Why don't consumers buy organic lamb meat? A Spanish case study. Meat Science162: 1-17.
Rahmani, B., Javadi, S., and Shahdany, S.M.H. 2019. Evaluation of aquifer vulnerability using PCA technique and various clustering methods. Geocarto International34: 1-24.
Risius, A., Hamm, U., and Janssen, M. 2019. Target groups for fish from aquaculture: Consumer segmentation based on sustainability attributes and country of origin. Aquaculture499: 341-347.
Schiffman, L.G., and Wisenblit, J. 2019. Consumer Behavior. (Twelfth ed.). Pearson Education Limited, Harlow.
Song, X., Pérez-Cueto, F.J.A., Bølling Laugesen, S.M., van der Zanden, L.D.T., and Giacalone, D. 2019. Older consumers' attitudes towards food carriers for protein-enrichment. Appetite135: 10-19.
Surya, P., and Laurence Aroquiaraj, I. 2019. Performance analysis of K-means and K-medoid clustering algorithms using agriculture dataset. Journal of Emerging Technologies and Innovative Research (JETIR)6 (1): 539-545.
Trademap. 2019. The International Trade Centre Database. Available from: https://www.trademap.org/Index.aspx.
Walker, O.C., and Mullins, J.W. 2014. Marketing Strategy: A Decision-Focused Approach. (Eighth ed.). McGraw-Hill Education, New York.
Wu, X., Hu, B., and Xiong, J. 2020. Understanding heterogeneous consumer preferences in Chinese milk markets: A latent class approach. Journal of Agricultural Economics71 (1): 184-198.
Zare Mehrjerdi, M., and Tohidi, A. 2014. An empirical analysis of exchange rate pass-through to Iran's saffron export price. Ethno-Pharmaceutical Products1 (1): 29-36.
Zhou, J., Zhai, L., and Pantelous, A.A. 2020. Market segmentation using high-dimensional sparse consumers data. Expert Systems with Applications145: 1-17.