اثر سطوح مختلف کیتوزان بر مقادیر و بیان ژن های کروسین و سافرانال در محیط کشت مایع زعفران (Crocus sativus L.)

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار گروه بیوتکنولوژی، دانشکده فنی و مهندسی، موسسه آموزش عالی شمس، گنبد کاووس، ایران

2 استاد گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 استاد گروه اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران

4 دانشیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

5 استادیار دانشگاه آزاد اسلامی واحد تاکستان، دانشکده علوم پایه، گروه شیمی، تاکستان، ایران

10.22048/jsat.2020.247224.1409

چکیده

زعفران (Crocus sativus) گیاه بسیار مهم دارویی و اقتصادی بومی ایران است که با طعم، عطر و رنگ خاص علاوه بر مصارف غذایی دارای خواص دارویی فراوانی است. هدف از این مطالعه بررسی تأثیر استفاده از کیتوزان به عنوان الیسیتور بر افزایش مقادیر کروسین و سافرانال و تغییرات بیان ژن‌های دخیل در تنظیم رونویسی به عنوان دو ترکیب دارویی مهم این گیاه در کشت سوسپانسیونی زعفران می‌باشد. برای این منظور به کشت پیازهای زعفران در محیط کشت MS2/1 و در محیط سوسپانسیون سلولی و در شرایط رشدی نسبت به اعمال تیمار 100 و150میلی گرم در لیتر کیتوزان و نمونه شاهد بدون اعمال تیمار اقدام گردید و در دو زمان 24 و 72 ساعت پس از اعمال تیمار و همچنین نمونه شاهد نسبت به جمع آوری نمونه در 3 تکرار اقدام شد. اندازه‌گیری متابولیت‌های ثانویه با HPLC و بررسی بیان ژن‌ها باReal time PCR انجام شد. نتایج نشان داد پس از استفاده از 100 و 150 میلی گرم در لیتر کیتوزان و پس از 24 و 72 ساعت دو ژن CsLYC و CsGT-2 به طور چشمگیری افزایش بیان نشان دادند همچنین نتایج نشان داد مقادیر سافرانال و کروسین بر اثر استفاده از کیتوزان دردو زمان برداشت اختلاف معنی داری دارند به طوری که 150 میلی گرم بر لیتر در زمان برداشت 72 ساعت پس از اعمال تیمار دارای بیشترین مقدار کروسین و سافرانال است. استفاده از کیتوزان به عنوان یک عامل محرک زیستی در رشد گیاهان دارویی و اقتصادی زعفران باعث افزایش مقادیر ترکیبات ارزشمند کروسین و سافرانال در کشت سوسپانسیون سلولی این گیاه بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of different levels of chitosan on the amounts and expression level of crocin and safranal genes in culture of saffron suspension (Crocus sativus L.)

نویسندگان [English]

  • Tofigh Taherkhani 1
  • Rasool Asghari Zakaria 2
  • Mansoor Omidi 3
  • Nasser Zare 4
  • mahboubeh taherkhani 5
1 Department of Biotechnology, Faculty of Engineering, Shams Institute of higher education, Gonbad kavous, Iran
2 Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
3 Department of Plant Breeding, Faculty of Agriculture and Natural Resources, University of Tehran, Iran
4 Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
5 Department of Chemistry, College of Science, Takestan Branch, Islamic Azad University, Takestan, Iran
چکیده [English]

Saffron (Crocus sativus) as an important medicinal and economical plant of Iran is rich in flavor, aroma and color, along with medicinal properties in addition to nutritional benefits. The effect of chitosan on Crocin and Safranal amounts as two important medicinal components and expression of their controlling genes in suspension culture of saffron was subjected as the aim of this study. For this purpose, saffron bulbs were cultured in ½ MS medium being treated with 100 and 150 mg/l of chitosan under cell suspension medium and callus optimal growth conditions. Samples were taken at 24 and 72 hours after the application of treatment in 3 replications. Measurement of secondary metabolites was done with HPLC and analysis of genes’ expression was performed with real-time PCR. The results showed that after the use of 100 and 150 mg/l of chitosan and after 24 and 72 hours, the two CsLYC and CsGT-2 genes expression significantly increased. Also, the results showed that Safranal and Crocin levels by the use of chitosan are significantly different at both harvesting times, so that 150 mg/l at harvest time of 72 hours after application of the treatment had the highest amount of Crocin and Safranal. Usage of chitosan as a bio-stimulant in the growth of medicinal and economic plants of saffron increased the amount of valuable secondary metabolites in the cell suspension culture of the plant.

کلیدواژه‌ها [English]

  • Chitosan
  • Safranal
  • Crocin
  • Saffron (Crocus sativus)
  • HPLC
  • Real Time PCR
 
Abdullaev, F.I. 2002. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Experimental Biology and Medicine 227 (1): 20-25.
Ahadi, P., Naghdi Badi, H., and Labbafi, M. 2017. Quantitative changes of Trigonelline metabolite in fenugreek (Trigonella foenum-graecum L.) sprouts under Chitosan and water stress induction. Journal of Medicinal Plants 16 (64): 22-32.
Ahrazem, O., Rubio Moraga, A., Lopez, R.C., and Gomez, L. 2010. The expression of chromoplast specific beta lycopene cyclase gene is involved in the high production of saffron precursors. Journal of Experimental Botany 61 (1): 105-119.
Bustin, S.A., Benes, V., Nolan, T., and Pfaffl, M.W. 2005. Quantitative real-time RT-PCR- a perspective. Journal of Molecular Endocrinology 34 (3): 597-601.
Castillo, R., Fernandez, J.A., and Gomez-Gomez, L. 2005. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiology 139 (2): 674-689.
Ebrahimzadeh, H., Rajabian, T., Abrishamchi, P., Karamian, R., and Saboora, O. 2006. Saffron of Iran with a Research Prspective Information. Publishing House. Iran. 644 p.
Ferri, M., and Tassoni, A. 2011. Chitosan as Elicitor of Health Beneficial Secondary Metabolites in In-vitro Plant Cell Cultures. In: Mackay RG and Tait JM. Handbook of Chitosan Research and Applications. Nova Science Publishers Inc. USA, pp. 389-414.
Häkkinen, S.T., Ritala, A., Rischer, H., and Oksman-Caldentey, K.M. 2013. Medicinal Plants, Engineering of Secondary Metabolites in Cell Cultures. In: Christou P. Savin R. Costa-Pierce BA. Misztal I and Whitelaw CBA Sustainable Food Production. Springer, New York, USA. 420 p.
INSO (Iranian National Standardization Organization). 2013. Saffron, Test methods. 259-2, 5th Revision. Iranian National Standardization Organization. Tehran, Iran. 80 p.
Iriti, M., and Faoro, F. 2009. Chitosan as a MAMP, searching for a PRR. Plant Signaling and Behavior 4 (1): 66-68.
Jeong, G.T., and Park, D.H. 2005. Enhancement of growth and secondary metabolite biosynthesis: Effect of elicitors derived from plants and insects. Biotechnology and Bioprocess Engineering 10 (1): 73-77.
Karuppusamy, S. 2009. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Journal of Medicinal Plants Research3 (13): 1222-1239.
Kim, S.J., Lee, S.Y., and Park, S. 2004. Agrobacterium mediated genetic transformation of Perilla frutescens. Plant Cell Reports, 23 (6): 386-390.
Mehregan, M., Mehrafarin, A., Labbafi, M., and Naghdi Badi, H. 2017. Effect of different concentrations of Chitosan biostimulant on biochemical and morphophysiological traits of Stevia plant (Stevia rebaudiana Bertoni). Journal of Medicinal Plants 2 (62): 169-181.
Mir, J.I., Ahmed, N., Wafai, A.H., and Qadri, R.A. 2012. Relative expression of CsZCD gene and apocarotenoid biosynthesis during stigma development in Crocus sativus L. Physiology and Molecular Biology of Plants 18 (4): 371-375.
Mzr, J.I., Ahmed, N., Mokhdomi, T.A., Wafai, A.H., Wani, S.H., and Bukhari, S. 2013. Relative expression of apocarotenoid biosynthetic genes in developing stigmas of Crocus sativus L. Journal of Crop Science and Biotechnology 16 (3): 183-188.
Nair, S.C., Kurumboor, S.K., and Hasegawa, J.H. 1995. Saffron chemoprevention in biology and medicine: a review. Cancer Biotherapy 10 (4): 257-264.
Namdeo, A.G. 2007. Plant cell elicitation for production of secondary metabolites: A review. Pharmacognosy Reviews 1 (1): 69-79.
Nandeeshkumar, P., Sudisha, J., Ramachandra, K., Prakash, H.S., Niranjana, SR., and Shekar, S. 2008. Chitosan induced resistance to downy mildew in sunflower caused by Plasmopara halstedii. Physiological and Molecular Plant Pathology 72 (4-6): 188-194.
Orlita, A., Sidwa‐Gorycka, M., Paszkiewicz, M., Malinski, E., Kumirska, J., Siedlecka, E., Łojkowska, E., and Stepnowski, P. 2008. Application of chitin and chitosan as elicitors of coumarins and furoquinolone alkaloids in Ruta graveolens L. (common rue). Biotechnology and Applied Biochemistry 51 (Pt2): 91-96.
Ozhan, N., Goldani, M., Naghdi Badi, H., Mehrafarin, A., and Parsa, M. 2017. Changes in Nepetalactone content and biochemical traits of catnip (Nepeta cataria L.) in response to induction of biostimulants compounds. Journal of Medicinal Plants 4 (64): 32-44.
Parray, J.A., Kamili, A.N., Hamid, R., and Husaini, A.M. 2012. In vitro cormlet production of saffron (Crocus sativus L. Kashmirianus) and their flowering response under greenhouse. GM Crops and Food 3 (4): 289-295.
Pu, G.B., Ma, D.M., Chen, J.L., Ma, L.Q., Wang, H., Li, G.F., Ye, H.C., and Liu, B.Y. 2009. Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Report 28 (7): 1127-1135.
Putalun, W., Luealon, W., De-Eknamkul, W., Tanaka, H., and Shoyama, Y. 2007. Improvement of artemisinin production by chitosan in hairy root cultures of Artemisia annua L. Biotechnology letters 29 (7): 1143-1146.
Rao, R.S., and Ravishankar, G.A. 2002. Plant tissue cultures; chemical factories of secondary metabolites. Biotechnology Advances 20 (2): 101-153.
Righetti, L., Franceschetti, M., Ferri, M., Tassoni, A., and Bagni, N. 2007. Resveratrol production in Vitis vinifera cell suspensions treated with several elicitors. Caryologia 60 (1-2): 169-171.
Salehi, S., and rezayatmand, Z. 2017. The effect of foliar application of chitosan on yield and essential oil of savory (Satureja isophylla L.) under salt stress. Herbal Drugs (JHD) 8 (2): 101-108.
Salimgandomi, S., and Shabrangi, A. 2016. The effect of Chitosan on antioxidant activity and some secondary metabolites of Mentha piperita L. Journal of Pharmaceutical and Health Sciences (JPHS) 4 (2): 135-142.
Tarantilis, P.A., Morjani, H., Polissiou, M., and Manfait, M. 1994. Inhibition of growth and induction of differentiation of promyelocytic leukemia (HL-60) by carotenoids from Crocus sativus L. Anticancer Research 14 (5A): 1913-1918.
Trapero, A., Ahrazem, O., Rubio-Moraga, A., Jimeno, M.L., Gómez, M.D., and Gómez-Gómez, L. 2012. Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus. Plant Physiology 159 (4): 1335‐1354.
Wani, Z.A., Kumar, A., Sultan, P., Bindu, K., Riyaz-Ul-Hassan, S., and Ashraf, N. 2017. Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant. Scientific Reports 7 (1): 8598.