با همکاری انجمن علمی گیاهان دارویی ایران

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد،گروه شیمی، دانشکده علوم، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استادیارگروه شیمی، دانشکده علوم، دانشگاه محقق اردبیلی، اردبیل، ایران

3 استادیار گروه ایمنی و کنترل کیفیت مواد غذایی، موسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

چکیده

زعفران گیاهی از گونه کروکوس ساتیووس از ارزشمندترین گیاهان بومی ایران بوده و در جهان به عنوان گران قیمت‌ترین ادویه و طلای سرخ مشهور شده است. ﻛﻼﻟﻪ زعفران ﺣﺎوی ﺳﻪ ﺗﺮﻛﻴﺐ اﺻﻠﻲ ﻛﺮوﺳﻴﻦ (رنگدانه های کاروتنوئیدی محلول در آب)، ﭘﻴﻜﺮوﻛﺮوﺳﻴﻦ (ﮔﻠﻴﻜﻮزﻳﺪ ﺗﻠﺦ مزه) و ﺳﺎﻓﺮاﻧﺎل (ﺟﺰء اﺻﻠﻲ ﻣﻮاد ﻓﺮار ﻣﻌﻄﺮ زعفران) ﻣﻲﺑﺎﺷﺪ. این مطالعه به منظور تعیین و مقایسه‌ی متابولیت‌های موجود در ﺍﻧﻮﺍع زﻋﻔﺮﺍن‌ﻫﺎی ﻣﺘﻔﺎﻭت ﺑﺮ‌ﺍﺳﺎس خاستگاه ﺟﻐﺮﺍﻓﯿﺎﯾﯽ آن­ها با استفاده از تکنیک کروماتوگرافی گازی-طیف سنجی جرمی انجام شد و 12 متابولیت فرار مربوط به زعفران‌های هفت منطقه مختلف خراسان رضوی مورد مقایسه قرار گرفتند. این مناطق عبارت بودند از تایباد، نیشابور،تربت حیدریه، تربت جام، زاوه، رشتخوار و کاشمر. نتایج تجزیه و تحلیل‌های آماری ( تست آنالیز واریانس ANOVA و به دنبال آن تست دانکن) نشان دادند که در سطح اطمینان 95% این نمونه‌ها در سطح پنج متابولیت فرار در این مناطق تفاوت معنی‌دار داشته و همین امر باعث تمایز زعفران مناطق مختلف از یکدیگر شده است. این متابولیت‌های فرار شامل سافرانال، مگاستیگما 4-6-8 ترین، آلفا گایین، ایکوزان و ویتامین E می باشند که مسئول عطر و خواص درمانی زعفران هستند. نتایج این مطالعه نشان می دهد که علیرغم شباهت در محتویات متابولیکی زعفران ها تفاوت‌های معناداری بین سطح برخی ازمتابولیت‌ها وجود دارد اگرچه این مناطق نزدیک به هم هستند. این تفاوت‌ها نشان می‌دهد که این زعفران‌ها می توانند به اهداف مختلفی شامل صنایع دارویی، غذایی، آرایشی و بهداشتی استفاده شوند. زعفران تربت جام مناسب برای استفاده در صنایع غذایی می‌باشد چون متابولیت مسئول عطر در آن غلظت بالایی دارد و زعفران منطقه تایباد مناسب برای مصرف در صنایع دارویی، آرایشی و بهداشتی می‌باشد. کیفیت زعفران کاشمر از بقیه پایین‌تر است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Comparison of metabolic profile in different Saffron samples based on their geographical origin using gas chromatography-mass spectroscopy techniques (GC-MS)

نویسندگان [English]

  • Seyed Mohsen Mousavi 1
  • Maryam Khoshkam 2
  • Javad Feizi 3

1 Masters student, Department of Chemistry, Faculty of Science, University Of Mohaghegh

2 Assistant Professor of Chemistry, Faculty of Science, University Of Mohaghegh Ardabili,

3 Assistant professor of Chemistry, Research Institute of Food Science and Technology, Department of Food Quality Control and Safety, Mashhad, Iran.

چکیده [English]

Saffron is a plant from Crocus Sativus species which is one of the most valuable indigenous herbs in Iran and is known as the most expensive spice and red gold. Saffron stigma consists of three major constituents including crocin (water soluble caretenoid pigments), picocrocin (bitter glycoside tasting) and safranal (the major volatile constituents in saffron aroma). The aim of this study was determination and comparison of existed metabolites in different types of saffron based on their geographical origins using gas chromatography-mass spectroscopy techniques (GC-MS) and 13 volatile metabolites were determined and compared in different saffron samples from seven different regions of Khorasan Razavi province. These regions were Taybad, Neyshabour, torbate heydarieh, torbate jam, Zaveh and Kashmar.The results from statistical analysis (analysis of variance ANOVA followed by Duncan test) show that the level of metabolites were different in different regions and this can be the main reason of their discrimination against each other. These volatile metabolites were safranal, Megastigma-4,6(Z),8(Z)-triene, α-Guaiene, icosane and vitamine E. The results of this study show that in spite of similarities of constituents of these saffron samples, there are significant differences between the levels of metabolites in these regions although these region are close to each other. These differences show that these saffron can be applied in different purposes including pharmaceutical, food, cosmetic and health industries depending on their origin. Saffron of Torbat-e-jam is proper for food industries since it is rich in aroma and Taibad is proper for pharmaceutical, cosmetic and health industries. The quality of Kashmar saffron is worse than other regions.

کلیدواژه‌ها [English]

  • Gas chromatography-Mass spectroscopy
  • Geographical origin
  • saffron volatile metabolites
Amanpour, A., Kelebek, H., and Selli, S. 2018. GLC/HPLC methods for saffron (Crocus sativus L.). In J.M. Mérillon Ramawat K.G. (eds.), Bioactive Molecules in Food. Springer International Publishing, Cham. pp. 1-49.
Anastasaki, E., Kanakis, C., Pappas, C., Maggi, L., del Campo, C.P., Carmona, M., Alonso, G.L., and Polissiou, M.G. 2009. Geographical differentiation of saffron by GC–MS/FID and chemometrics. European Food Research and Technology 229: 899-905.
Assimopoulou, A., Sinakos, Z., and Papageorgiou, V. 2005. Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 19: 997-1000.
Baba, S.A., Malik, A.H., Wani, Z.A., Mohiuddin, T., Shah, Z., Abbas, N., and Ashraf, N. 2015. Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. South African Journal of Botany 99: 80-87.
Babaei, S., Talebi, M., and Bahar, M. 2014. Developing an SCAR and ITS reliable multiplex PCR-based assay for safflower adulterant detection in saffron samples. Food Control 35: 323-328.
Barani, A., and Tajik, H. 2019. Simultaneous determination of saffron and synthetic dyes in ready-to-cook Iranian barbecued chicken by HPLC. International Journal of Food Properties 22: 1608-1614.
Bathaie, S.Z., Farajzade, A., and Hoshyar, R. 2014. A review of the chemistry and uses of crocins and crocetin, the carotenoid natural dyes in saffron, with particular emphasis on applications as colorants including their use as biological stains. Biotechnic and Histochemistry: Official Publication of the Biological Stain Commission 89: 401-411.
Behnia, M. 1991a. Saffron Cultivation. Tehran University Publication. pp. 112-127. (In Persian).
Behnia, M. 1991b. Saffron: Botany, Cultivation and Production. Tehran: Tehran Univerity Publication. pp. 1-35.
Bewick, V., Cheek, L., and Ball, J. 2004. Statistics review 9: one-way analysis of variance. Crit Care 8: 130-136.
Caballero-Ortega, H., Pereda-Miranda, R., and Abdullaev, F.I., 2007. HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chemistry 100: 1126-1131.
Cadwallader, K.R. 2001. Flavor Chemistry of Saffron. Carotenoid-Derived Aroma Compounds. American Chemical Society. pp. 220-239.
Carmona, M., Martinez, J., Zalacain, A., Rodriguez-Mendez, M.L., de Saja, J.A., and Alonso, G.L. 2006. Analysis of saffron volatile fraction by TD–GC–MS and e-nose. European Food Research and Technology 223: 96-101.
Carmona, M., Sánchez, A.M., Ferreres, F., Zalacain, A., Tomás-Barberán, F., and Alonso, G.L. 2007a. Identification of the flavonoid fraction in saffron spice by LC/DAD/MS/MS: Comparative study of samples from different geographical origins. Food Chemistry 100: 445-450.
Carmona, M., Zalacain, A., Salinas, M., and Alonso, G. 2007b. A new approach to saffron aroma. Critical Reviews in Food Science and Nutrition 47: 145-159.
Castellar, M., Montijano, H., Manjon, A., and Iborra, J. 1993. Preparative high-performance liquid chromatographic purification of saffron secondary metabolites. Journal of Chromatography A 648: 187-190.
Chen, M., Rao, R.S.P., Zhang, Y., Zhong, C.X., and Thelen, J.J. 2014. A modified data normalization method for GC-MS-based metabolomics to minimize batch variation. SpringerPlus 3: 439.
Chen, Y., Zhang, H., Tian, X., Zhao, C., Cai, L., Liu, Y., Jia, L., Yin, H.X., and Chen, C. 2008. Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides ELLIS and Crocus sativus L.: A relationship investigation between antioxidant activity and crocin contents. Food Chemistry 109: 484-492.
Corti, P., Mazzei, E., Ferri, S., Franchi, G.G., and Dreassi, E. 1996. High Performance thin layer chromatographic quantitative analysis of Picrocrocin and Crocetin, active principles of saffron (Crocus sativus L. Iridaceae): A New Method. Phytochemical Analysis 7: 201-203.
D’Archivio, A.A., Di Donato, F., Foschi, M., Maggi, M.A., and Ruggieri, F. 2018. UHPLC analysis of saffron (Crocus sativus L.): optimization of separation using chemometrics and detection of minor crocetin esters. Molecules 23: 1851.
de la Torre-Carbot, K., Jauregui, O., Gimeno, E., Castellote, A., Lamuela-Raventós, R., and López-Sabater, M. 2005. Characterization and quantification of phenolic compounds in olive oils by solid-phase extraction, HPLC-DAD, and HPLC-MS/MS. Journal of Agricultural and Food Chemistry 53: 4331-4340.
Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11: 1-42.
Fadafen, A.O., Aminifard, M., Moradinezhad, F., and Behdani, M. 2018. The Effect of biological fertilizer nitroxin on Secound Metabolits of Saffron (Crocus sativus L.). Horticultural Plants Nutrition 1: 17-28.
Gazdag, M. 2000. 2.7. High Performance Liquid Chromatography (HPLC) and Related Techniques 2.7. 1. Separation, Detection and Determination of Impurities by HPLC. Identification and Determination of Impurities in Drugs. 210p.
Gresta, F., Lombardo, G., Siracusa, L., and Ruberto, G. 2008. Saffron, an alternative crop for sustainable agricultural systems. A review. Agronomy for Sustainable Development 28: 95-112.
Gresta, F., Lombardo, G., Siracusa, L., and Ruberto, G. 2009. Saffron, an alternative crop for sustainable agricultural systems: a review. Sustainable Agriculture 355-376.
Grosch, W. 1993. Detection of potent odorants in foods by aroma extract dilution analysis. Trends in Food Science and Technology 4: 68-73.
Guijarro-Díez, M., Castro-Puyana, M., Crego, A.L., and Marina, M.L. 2017. A novel method for the quality control of saffron through the simultaneous analysis of authenticity and adulteration markers by liquid chromatography-(quadrupole-time of flight)-mass spectrometry. Food Chemistry 228: 403-410.
Han, T.L., Yang, Y., Zhang, H., and Law, K.P., 2017. Analytical challenges of untargeted GC-MS-based metabolomics and the critical issues in selecting the data processing strategy. F1000 Research 6: 967-983
Heidarbeigi, K., Mohtasebi, S.S., Foroughirad, A., Ghasemi-Varnamkhasti, M., Rafiee, S., and Rezaei, K. 2015. Detection of adulteration in saffron samples using electronic nose. International Journal of Food Properties 18: 1391-1401.
Hoshyar, R., Bathaie, S.Z., and Etemadikia, B. 2010. Quantitative and comparative analysis of major metabolites (crocin, picrocrocin and safranal) in different packages of Iranian saffron by HPLC. Pathobiology Research 13: 63-71.
Hosseinzadeh, H., and Sadeghnia, H.R. 2007. Effect of safranal, a constituent of Crocus sativus (Saffron), on methyl methanesulfonate (MMS)–induced DNA damage in mouse organs: an alkaline single-cell gel electrophoresis (Comet) assay. DNA and Cell Biology 26: 841-846.
Iborra, J.O.L., Castellar, M.R., CÁnovas, M., and ManjÓn, A. 1992. TLC preparative purification of picrocrocin, HTCC and crocin from saffron. Journal of Food Science 57: 714-716.
Kamaraki Farahani, A.A.F., Baghaei, P., Rezaei, M.B., Jaymand, K., 2005. Methodes for the analysis of carotenoides (crocins and crocetin of saffron) using thin layer chromatography (tlc). Iranian Journal of Medicinal and Aromatic Plants 20: 407-416.
Kanakis, C.D., Tarantilis, P.A., Tajmir-Riahi, H.A., and Polissiou, M.G. 2007. Crocetin, dimethylcrocetin, and safranal bind human serum albumin: stability and antioxidative properties. Journal of Agricultural and Food Chemistry 55: 970-977.
Karanja, E., Boga, H., Muigai, A., Wamunyokoli, F., Kinyua, J., and Nonoh, J. 2010. Growth characteristics and production of secondary metabolites from selected novel Streptomyces species isolated from selected Kenyan national parks. JKUAT Annual Scientific Conference Proceedings. pp. 51-80.
Knapp, H., Straubinger, M., Stingl, C., and Winterhalter, P. 2001. Analysis of Norisoprenoid Aroma Precursors. Carotenoid-Derived Aroma Compounds. American Chemical Society. pp. 20-35.
Lage, M., and Cantrell, C.L. 2009. Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Scientia Horticulturae 121: 366-373.
Lozano, P., Castellar, M., Simancas, M., and Iborra, J. 1999. A quantitative high-performance liquid chromatographic method to analyse commercial saffron (Crocus sativus L.) products. Journal of Chromatography A 830: 477-483.
Mattivi, F. 2016. Key enzymes behind black pepper aroma in wines. Journal of Experimental Botany 67: 555-557.
Montoro, P., Tuberoso, C.I., Maldini, M., Cabras, P., and Pizza, C., 2008. Qualitative profile and quantitative determination of flavonoids from Crocus sativus L. petals by LC-MS/MS. Natural Product Communications 3: 2013-2016.
Nandhini, S.U., Sangareshwari, S., and Lata, K. 2015. Gas chromatography-mass spectrometry analysis of bioactive constituents from the marine Streptomyces. Asian Journal of Pharmaceutical and Clinical Research 8: 244-246.
Narasimhan, S., Chand, N., and Rajalakshmi, D. 1992. Saffron: quality evaluation by sensory profile and gas chromatography. Journal of Food Quality 15: 303-314.
Ochiai, T., Shimeno, H., Mishima, K., Iwasaki, K., Fujiwara, M., Tanaka, H., Shoyama, Y., Toda, A., Eyanagi, R., and Soeda, S. 2007. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochimica Biophysica Acta 1770: 578-584.
Pathan, S.A., Alam, S., Jain, G.K., Zaidi, S.M., Akhter, S., Vohora, D., Khar, R.K., and Ahmad, F.J. 2010. Quantitative analysis of safranal in saffron extract and nanoparticle formulation by a validated high‐performance thin‐layer chromatographic method. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques 21: 219-223.
Pfander, H., and Schurtenberger, H. 1982. Biosynthesis of C20-carotenoids in Crocus sativus. Phytochemistry 21: 1039-1042.
Rödel, W., and Petrzika, M., 1991. Analysis of the volatile components of saffron. Journal of High Resolution Chromatography 14: 771-774.
Sabatino, L., Scordino, M., Gargano, M., Belligno, A., Traulo, P., and Gagliano, G. 2011. HPLC/PDA/ESI-MS evaluation of saffron (Crocus sativus L.) adulteration. Natural Product Communications 6: 1873-1876.
Sampathu, S., Shivashankar, S., Lewis, Y., and Wood, A. 1984. Saffron (Crocus sativus Linn.)—Cultivation, processing, chemistry and standardization. Critical Reviews in Food Science and Nutrition 20: 123-157.
Sánchez, A.M., Carmona, M.A., Ordoudi, S.Z. Tsimidou, M., and Alonso, G.L. 2008. Kinetics of individual crocetin ester degradation in aqueous extracts of saffron (Crocus sativus L.) upon thermal treatment in the dark. Journal of Agricultural and Food Chemistry 56: 1627-1637.
Sereshti, H., Poursorkh, Z., Aliakbarzadeh, G., Zarre, S., and Ataolahi, S. 2018. An image analysis of TLC patterns for quality control of saffron based on soil salinity effect: A strategy for data (pre)-processing. Food Chemistry 239: 831-839.
Shakeri, m. 2020. Effects of different gibberellic acid levels and corm weight on antioxidant activity and secondary metabolites of saffron (Crocus sativus L.). Journal of Saffron Research. In Press.
Shakeri, M., Aminifard, M.H., Behdani, M.A., and Tabatabaei, S.J. 2018. Study of the effect hormone of gibberellic acid and corm weight on vegetative and yield traits of saffron (Crocus sativus L. ). Journal of Plant Production. Journal of Agricultural Sciences and Natural Resources 25: 153-165.
sheykholeslami, P., Saba, J., Shekari, F., Azimi, M.R., and Maleki, A. 2020. Evaluation of secondary metabolites, total phenol content and antioxidant properties of petal in saffron populations under conventional and once irrigation conditions. Journal of Saffron Agronomy and Technology 8: 231-242.
Srivastava, R., Ahmed, H., Dixit, R.K., Dharamveer, and Saraf, S.A. 2010. Crocus sativus L.: A comprehensive Review. Pharmacogn Reviews 4: 200-208.
Sujata, V., Ravishankar, G., and Venkataraman, L. 1992a. Methods for the analysis of the saffron metabolites crocin, crocetins, picrocrocin and safranal for the determination of the quality of the spice using thin-layer chromatography, high-performance liquid chromatography and gas chromatography. Journal of Chromatography A 624: 497-502.
Sujata, V., Ravishankar, G.A., and Venkataraman, L.V. 1992b. Methods for the analysis of the saffron metabolites crocin, crocetins, picrocrocin and safranal for the determination of the quality of the spice using thin-layer chromatography, high-performance liquid chromatography and gas chromatography. Journal of Chromatography A 624: 497-502.
Takase, H., Sasaki, K., Shinmori, H., Shinohara, A., Mochizuki, C., Kobayashi, H., Ikoma, G., Saito, H., Matsuo, H., Suzuki, S., and Takata, R. 2015. Cytochrome P450 CYP71BE5 in grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound (-)-rotundone. Journal of Experimental Botany 67: 787-798.
Tarantilis, P.A., Tsoupras, G., and Polissiou, M. 1995. Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. Journal of Chromatography A 699: 107-118.
Vakili-ghartavol, M., and Alizadeh Salteh, S. 2016. Comparison between metabolites ant antioxidant activity of saffron (Crocus sativus L.) from Kashmar and Marand regions. Saffron Agronomy and Technology 4: 215-224.
Winterhalter, P., and Straubinger, M. 2000. Saffron—renewed interest in an ancient spice. Food Reviews International 16: 39-59.
Zarghami, N., and Heinz, D. 1971. Monoterpene aldehydes and isophorone-related compounds of saffron. Phytochemistry 10: 2755-2761.