ارزیابی ردپای کربن برای نظام‌های تولید زعفران در استان‌های خراسان

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشیار گروه اگروتکنولوژی، ، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 استاد گروه اگروتکنولوژی، دانشکده کشاورزی دانشگاه فردوسی مشهد

3 دکتری فیزیولوژی گیاهان زراعی، گروه اگروتکنولوژی دانشکده کشاورزی دانشگاه فردوسی مشهد

4 دانشجوی دکتری بوم شناسی، گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

10.22048/jsat.2021.255436.1413

چکیده

ردپای کربن (CF) میزان انتشار گازهای گلخانه‌ای به ازای واحد سطح در بوم‌نظام‌های کشاورزی است. از آنجا که نهاده‌های ورودی نقش مهمی در انتشار گازهای گلخانه‌ای به اتمسفر دارد، شاخص اکولوژیکی CF برای ارزیابی تبعات زیست‌محیطی در بوم‌نظام‌های کشاورزی مورد استفاده قرار می‌گیرد. هدف از این مطالعه، برآورد CF و کارایی کربن (CE) در نظام‌های تولید زعفران در استان‌های خراسان شمالی، جنوبی و رضوی بود. همچنین آنالیز ارزیابی چرخه حیات برای کمی‌سازی اثر فعالیت‌های کشاورزی بر محیط زیست در نظام‌های تولید زعفران انجام گردید. شاخص‌های مورد بررسی شامل پتانسیل گرمایش جهانی، پتانسیل اسیدی شدن، پتانسیل اوتریفیکاسیون در زیرگروه‌های خشکی و آبی، انتشار مستقیم و غیرمستقیم N2O، انتشار N2O تحت تاثیر آبشویی و تصعید، ورودی‌های کربن (Ci)، خروجی‌های کربن (Co)، CF و CE بودند. نتایج این مطالعه نشان داد که کمترین پتانسیل گرمایش جهانی در نظام‌های تولید زعفران برای خراسان جنوبی برابر با 43/339 کیلوگرم معادل CO2 به ازای یک کیلوگرم گل محاسبه گردید. کمترین شاخص بوم‌شناخت (EcoX) مربوط به استان خراسان جنوبی (با 039/0 EcoX به ازای یک کیلوگرم گل) بود. انتشار اکسید نیتروس در استان‌های خراسان جنوبی، رضوی و شمالی به ترتیب 51/95974، 4/199674 و 344723 کیلوگرم N2O به ازای یک هکتار برآورد گردید. بالاترین انتشار N2O تحت تاثیر فرآیندهای آبشویی و تصعید برای استان خراسان شمالی (به ترتیب با 21/1 و 23/24 کیلوگرم N2O به ازای یک هکتار) محاسبه شد. بالاترین ورودی‌‌ها و خروجی‌های کربن مربوط به خراسان شمالی به ترتیب با 52/117986 و 56/15135 کیلوگرم کربن به ازای یک هکتار بود. بیشترین ردپای کربن مربوط به خراسان شمالی با 8/7 و بالاترین کارایی کربن برای خراسان جنوبی با 18/0 بدست آمد. سوخت‌ فسیلی و خاکورزی‌ فشرده مهمترین عوامل انتشار CO2 تعیین گردیدند. بنابراین، انتخاب خاکورزی‌های حفاظتی و کاهش یافته، وارد کردن گونه‌های تثبیت‌کننده نیتروژن، گونه‌های پوششی و کودهای سبز در تناوب زراعی با زعفران و افزایش کارایی مصرف نیتروژن را می‌توان به عنوان راهکارهای اکولوژیک برای بهبود عملکرد اقتصادی نظام‌های زعفران همراه با کاهش تبعات زیست‌محیطی و تخفیف ردپای کربن این سیستم‌های زراعی مدنظر قرار داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Carbon Footprint for Saffron Production Systems in Khorasan Provinces

نویسندگان [English]

  • Surur Khorramdel 1
  • Mehdi Nassiri Mahallati 2
  • Abdollah Soltan Ahmadi 3
  • Mina Hooshmand 4
  • Mohammad Javad Mostafavi 4
1 Associated Professor, Department of Agronomy, Faculty of Agriculture, Ferdowsi University of Mashhad
2 Professor, Department of Agrotecnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
3 PhD in Crop Physiology, Department of Agrotecnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
4 PhD student in Agroecology, Department of Agrotecnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
چکیده [English]

Carbon footprint (CF) is the total amount of greenhouse gas emissions per unit of farmlands. Since the used inputs have an important role in greenhouse gas emissions, CF as an ecological indicator have been extensively applied for assessing the environmental externalities in agroecosystems. This study was conducted to estimate the CF and carbon efficiency (CE) of saffron production systems in North Khorasan, Razavi Khorasan and South Khorasan provinces. Also, life cycle assessment analysis is calculated for quantifying the impact of saffron farming activity on the environment. Studied indices were global warming potential (GWP), acidification potential )AP) and eutrophication potential in terrestrial (UPT) and aquatic (UPA) sub-categories, N2Odirect, N2Oindirect, N2O emissions affected as volatilization and leaching, carbon inputs (Ci), carbon outputs (Co), CF and CE. The results revealed that the lowest GWP for saffron production systems was related to south Khorasan with 339.43 kg CO2 equiv./ one kg flower yield. The minimum environmental index (EcoX) was recorded for south Khorasan (0.039 EcoX/ one kg flower yield). N2O emissions in South Khorasan, Razavi Khorasan and North Khorasan provinces were estimated with 95974.51, 199674.4 and 344723 kg N2O per one ha, respectively. The largest N2O emissions affected as leaching and volatilization were calculated for North Khorasan province (with 1.21 and 24.23 kg N2O per one ha, respectively). The maximum Ci and Co were related to North Khorasan province with 117986.52 and 15135.56 kg C per one ha, respectively. The largest CF and CE were computed for North Khorasan and south Khorasan provinces with 7.8 and 0.18, respectively. It concluded that adoption on conservation and reduced tillages, N2- fixing pulses, cover crops and green manures in rotations with saffron and increased nitrogen use efficiency as ecological approaches can optimize the system performance while reducing environmental externalities and the carbon footprint of the crop cultivation. So, with relevant agro-environmental policies in saffron production systems along with the adoption of improved agronomical practices increasing flower yield with no cost the environment can be achieved effectively, efficiently and economically.

کلیدواژه‌ها [English]

  • N2O emission
  • Global warming potential
  • Carbon efficiency
  • Nitrogen use efficiency
  • Greenhouse Gases
 
Ahlgren, S., Hansson, P.A., Kimming, M., Aronsson, P., and Lundkvist, H. 2009. Greenhouse gas emissions from cultivation of agricultural crops for biofuels and production of biogas from manure implementation of the Directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources. Revised according to instructions for interpretation of the Directive from the European Commission. Swedish University of Agricultural Sciences, Uppsala, Sweden. pp. 07-30.
Al-Kaisi, M.M., and Yin, X. 2005. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. Journal of Environment Quality 34: 437-445.
Alluvione, F., Moretti, B., Sacco, D., and Grignani, C. 2011. EUE (energy use efficiency) of cropping systems for a sustainable agriculture. Energy 36: 4468-4481.
Bakhshaei, S., Koocheki, A., and Nassiri Mahallati, M. 2016.  Investigation of CO2 emission of agroecosystems of Iran: 1- Wheat, Barley and Corn. Journal of Agroecology. (In Press). (In Persian with English Summary)
Bakhtiari, A.A., Hematian, A., and Sharifi, A. 2015. Energy analyses and greenhouse gas emissions assessment for saffron production cycle. Environmental Science and Pollution Research 22 (20): 16184-16201.
Barker-Reid, F., Gates, W.P., Wilson, K., Baigent, R., Galbally, I.E., Meyer, C.P., Weeks, I.A., and Eckard, R.J. 2005. Soil nitrous oxide emission from rainfed wheat in SE Australia. In A. van Amsted (eds.). Non-CO2 Greenhouse Gases (NCGG-4). Utrecht, the Netherlands: Mill Press.
Bexfield, L.M. 2008. Decadal-scale changes of pesticides in ground water of the United States, 1993-2003. Journal of Environmental Quality 37: S226-S239.
Billen, G., Garnier, J., and Lassaletta, L. 2013. The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales. Philosophical Transactions of the Royal Society B: Biological Sciences 368: 20130123.
Bolinder, M.A., Janzen, H.H., Gregorich, E.G., Angers, D.A., and VandenBygaart, A.J. 2007. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agriculture, Ecosystems and Environment 118: 29-42.
Brentrup, F., Küsters, J., Kuhlmann, H., and Lammel, J. 2001. Application of the life cycle assessment methodology to agricultural production: an example of sugar beet production with different forms of nitrogen fertilisers. European Journal of Agronomy 14: 221-233.
Brentrup, F., Küsters, J., Kuhlmann, H., and Lammel, J. 2004a. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy 20 (3): 247-264.
Brentrup, F., Küsters, J., Lammel, J., Barraclough, P., and Kuhlmann, H. 2004b. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology: II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy 20 (3): 265-279.
Carbon Thrust. 2007. Carbon footprint measurement methodology, version 1.1. The Carbon Thrust, London, UK.
Charles, R., Jolliet, O., Gaillard, G., and Pellet, D. 2006. Environmental analysis of intensity level in wheat crop production using life cycle assessment. Agriculture, Ecosystems and Environment 113: 216-225.
Chen, G.Q., and Zhang, B. 2010. Greenhouse gas emissions in China 2007: inventory and input–output analysis. Energy Policy 38 (10): 6180-6193.
Cheng, K., Yan, M., Nayak, D., Pan, G., Smith, P., Zheng, J., and Zheng, J. 2015. Carbon footprint of crop production in China: An analysis of National Statistics data. The Journal of Agricultural Science 153 (3): 422-431
Choudrie, S.L., Jackson, J., Watterson, J.D., Murrells, T., Passant, N., Thompson, A., Cardenas, L., Leech, A., Mobbs, D.C., Thistlethwaite, G., Abbott, J., Dore, C., Goodwin, J., Hobson, M., Li, Y., Manning, A., Ruddock, K., and Walker, C. 2008. Gas Inventory, 1990 to 2006, Annual Report for submission under the Framework Convention on Climate Change. ISBN 0-9554823-4-2.
Crutzen, P.J. 1981. Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide. In C.C. Delwiche (eds.). Denitrification, Nitrification, and Atmospheric Nitrous Oxide (pp. 17–44). New York: Wiley.
Dyer, J.A., and Desjardins, R.L. 2003. The impact of farm machinery management on greenhouse gas emissions from Canadian agriculture. Journal of Sustainable Agriculture 20: 59-74.
ECETOC. 1994. European Chemical Industry Ecology and Toxicology Centre (ECETOC). 1994. Ammonia Emissions to Air in Western Europe. Technical Report No. 62. ECETOC, Brussels.
Finkbeiner, M., Inaba, A., Tan, R.B.H., Christiansen, K., and Klüppel, H.J. 2006. The new international standards for life cycle assessment: ISO 14040 and ISO 14044. International Journal of Life Cycle Assessment 11 (2): 80-85.
Finnveden, G., and Potting, J. 1999. Eutrophication as an impact category, state of the art and research needs. International Journal of Life Cycle Assessment 4: 311-314.
Follett, R.F. 2001. Soil management concepts and carbon sequestration in cropland soils. Soil and Tillage Research 61: 77-92.
Gan, Y., Liang, C., Hamel, C., Cutforth, H., and Wang, H. 2011. Strategies for reducing the carbon footprint of field crops for semiarid areas. A review. Agronomy for Sustainable Development 31:643-656.
Gan, Y., Liang, C., Huang, G., Malhi, S., Brandt, A., and Katepa-Mupondwa, F. 2012. Carbon footprint of canola and mustard is a functionof the rate of N fertilizer. International Journal of Life Cycle Assessment 17: 58-68.
Hamilton, C.E., Bever, J.D., Labbé, J., Yang, X., and Yin, H. 2016. Mitigating climate change through managing constructed-microbial communities in agriculture. Agriculture, Ecosystems and Environment 216: 304-308.
Heffer, P., and Prud-homme, M. 2009. Mediumterm outlook for global fertilizer demand, supply and trade: 2009-2013. In Proceedings 77th IFA Annual Conference, 25th -27th May, Shangha, China. pp: 1-12.
Helgason, B.L., Janzen, H.H., Chantigny, M.H., Drury, C.F., Ellert, B.H., Gregorich, E.G., Lemke, S., Pattey, E. Rochette, P., and Wagner-Riddle, C. 2005. Toward improved coefficients for predicting direct N2O emissions from soil in Canadian agroecosystems. Nutrient Cycling in Agroecosystems 71: 87-99.
Hillier, J., Hawes, C., Squire, G., Hilton, A., Wale, S., and Smith, P. 2009. The carbon footprints of food crop production. International Journal of Agricultural Sustainable 7: 107–118.
Hillier, J., Hawes, C., Squire, G., Hilton, A., Wale, S., and Smith, P. 2009. The carbon footprints of food crop production. International Journal of Agricultural Sustainability 7 (2): 107-118.
Houghton, J.T., Jenkins, G.J., and Ephraums, J.J. 1993. Climate Change. The IPCC Scientific Assessment. Cambridge University Press, 365 pp.
Huijbregts, M.A.J. 2001. Uncertainty and variability in environmental life-cycle assessment. Ph.D. Dissertation, University of Amsterdam, Amsterdam.
IPCC. 2019a. Assesment Report, Summary fore plicy makers. Geneva, Switzerland.
IPCC. 2019b. Summary for policymakers. Geneva, Switzerland, 24 pp.
Iriarte, A., Rieradevall, J., and Gabarrell, X. 2010. Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Journal of Cleaner Production 18 (4): 336-345.
ISO (International Organization for Standardization). 2006. ISO 14040:2006 (E) Environmental Management- Life Cycle Assessment- Principles and Framework.
Kaab, A., Sharifi, M., and Mobli, H. 2020. Life cycle assessment and estimation of environmental pollutants emission in sugarcane production (Saccharum officinarum L.) using artificial neural network. Journal of Agroecology 12 (1): 87-106. (In Persian with English Summary).
Kallenbach, C.M., Wallenstein, M.D., Schipanksi, M.E., and Grandy, A.S. 2019. Managing agroecosystems for soil microbial carbon use efficiency: Ecological Unknowns, Potential Outcomes, and a Path Forward. Frontiers in Microbiology 10: e1146.
Khorramdel, S., Abolhassani, L., and Azam Rahmati, E. 2017. Environmental impacts assessment of saffron agroecosystems using life cycle assessment methodology: (Case study: Torbat-e Heydarieh and Ghaen counties). Journal of Saffron Research 4 (2): 229-248. (In Persian with English Summary).
Khorramdel, S., Mollafilabi, A., and Latifi, H. 2018a. Evaluating the potential of carbon sequestration and global warming potential for saffron fields (Case study: Khorasan-e Razavi Province). Journal of Plant Production Research 25 (1): 13-29. (In Persian with English Summary).
Khorramdel, S., Nassiri Mahallati, M., Moallem Banhangi, F., and Mollafilabi, A. 2019. Evaluation of environmental impacts of saffron (Crocus sativus L.) agroecosystems in the Khorasan province affected as field size by using life cycle assessment. Saffron Agronomy and Technology 7 (2): 185-206. (In Persian with English Summary)
Khorramdel, S., Rezvani Moghaddam, P., and Ghafori, A. 2018b. Economic evaluation of agroecosystem services of saffron in the Khorasan Razavi province. Saffron Agronomy and Technology 6 (1): 73-89. (In Persian with English Summary).
Khoshnevisan, B., Rafiei, S., Omid, M., Keyhani, A., and Movahedi, M. 2013. Assessing of energy indices and environmental impacts of potato production (Case study: Fereydoonshahr region, Isfahan province). Iranian Journal of Biosystems Engineering 44 (1): 57-66. (In Persian with English Summary).
Koocheki, A. 2018. Agro-ecological aspects of saffron production with a holistic approach. In: Fifth National Conference on Saffron, November 14-15, Torbat-Heydarieh, Iran. (In Persian with English Summary).
Koocheki, A., Khorramel, S., and Shabahang, J. 2020. Evaluation of quality criteria and yield of saffron on simulated On-farm conditions. Journal of Saffron Research. (In Press). (In Persian with English Summary)
Kuesters, J., and Lammel, J. 1999. Investigations of the energy efficiency of the production of winter wheat and sugar beet in Europe. European Journal of Agronomy 11: 35-43.
Lal, R. 2004a. Carbon emission from farm operations. Environment International 30: 981-990.
Lal, R. 2004b. Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623-1627.
Lal, R. 2008. Carbon sequestration. Philosophical Transactions of the Royal Society B 363: 815-830.
Lal, R., Kimble, J.M., Follett, R.F., and Cole, C.V. 1998. The Potential of U.S. Cropland to Sequester Carbon and Mitigate the Greenhouse Effect. Sleeping Bear Press, Ann Arbor, Michigan.
Liu, C., Cutforth, H., Chai, Q., and Gan, Y. 2016 Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas: A review. Agronomy for Sustainable Development 36 (4): 69.
Moudrý, J., Jelínková, Z., Plch, R., Moudrý, J., Konvalina, P., and Hyšpler, R. 2013. The emissions of greenhouse gases produced during growing and processing of wheat products in the Czech Republic. The Journal of Food, Agriculture and Environment 11 (1): 1133-1136.
Nikkhah, A., Firouzi, S., Hossein Payman, S.H., and Khorramdel, S. 2016. Life cycle assessment of urea fertilizer consumption in Iran. Journal of Natural Environment 69 (3): 853-864. (In Persian with English Summary).
Ogle, S.M., Breidt, F.J., and Paustian, K. 2005. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72: 87-121.
Paul, E., Paustian, K., Elliott, E.T., and Cloe, C.V. 1997. Soil Organic Matter in Temperate Agriecosystems: Long-term Experiments in North America. CRC Press, Boca Raton, Florida. 414 pp.
Pietola, L., and Alakukku, L. 2005. Root growth dynamics and biomass input by Nordic annual field crops. Agriculture, Ecosystems and Environment 108: 135-144.
Qiao, Y., Miao, S., Han, X., You, M., Zhu, X., and Horwath, W.R. 2014. The effect of fertilizer practices on N balance and global warming potential of maize–soybean–wheat rotations in Northeastern China. Field Crops Research 161: 98-106.
Rathke, G.W., and Diepenbrock, H.W. 2003. Energy balances of different crops with rape. In: Proceedings of the 11th International Rapeseed Congress, Copenhagen, Denmark, 6e10 July 2003. pp. 765-768.
Rezvani Moghaddam, P., Khorramdel, S., and Sina Farshchin, S. 2021. Comparison the environmental effect of conventional and organic saffron production systems by using the life cycle assessment methodology. Iranian Journal of Field Crops Research. (In Press). (In Persian with English Summary).
Richards, I.R. 2000. Energy balance in the growth of oilseed rape for biodiesel and of wheat for bioethanology. Levington Agriculture Report. British Association for Bio Fuels and Oils.
Robertson, G.P., Paul, E.A., and Harwood, R.R. 2000. Greenhousegases in intensive agriculture: Contributions of individual gases tothe radiative forcing of the atmosphere. Science 289: 1922-1925.
Rochette, P. 2008. Estimation of N2O emmisions from agricultural soils in Canada, I: Development of a country specific methodology. Canadian Journal of Soil Science 88 (5): 641-654.
Romero-Gámez, M., Audsley, E., and Suárez-Rey, E.M. 2014. Life cycle assessment of cultivating lettuce and escarole in Spain. Journal of Cleaner Production 73: 193-203.
Sharma, M.K., and Kumar, P. 2011. A guide to identifying and managing nutrient definitions in cereal crops. International Plant Nutrition Institute. USA. 49 pp.
Sperow, M., Eve, M., and Paustian, K. 2003. Potential soil C sequestration on U.S. agricultural soils. Climate Change 57: 319-339.
Van der Hoek, K.W., and Van Schijndel, M.W. 2006. Methane and nitrous oxide emissions from animal manure management 1990–2003. Background document on the calculation method for the Dutch National Inventory Report. RIVM and MNP (Netherlands Environmental Assessment Agency), Beethoven, The Netherlands, pp. 1-50.
Wang, M., Wu, W., Liu, W., and Bao, Y. 2007. Life cycle assessment of the winter wheat-summer maize production system on the North China Plain. International Journal of Sustainable Development and World Ecology 14: 400‑ 407.
Wiedmann, T., and Minx, J. 2007. A definition of carbon footprint. ISAUK Research Report 07-01, Durham, ISAUK Research and Consulting.
Yan, M., Cheng, K., Luo, T., Yan, Y., Pan, G., and Rees, R.M. 2015. Carbon footprint of grain crop production in China- based on farm survey data. Journal of Cleaner Production 104: 130-138.
Yuan, S., and Peng, S. 2017. Trends in the economic return on energy use and energy use efficiency in China's crop production. Renewable and Sustainable Energy 70: 836-844.
Zakiaghl, M., Khorramdel, S., Nabati, J., Koocheki, A., Nezami, A., Mirshamsi, A., Rezvani Moghaddam, P., and Nassiri Mahallati, M. 2020. Criteria for production of standard pathogen-free saffron corms. Saffron Agronomy and Technology. (In Press). (In Persian with English Summary).
Zhang, C., Chen, J., and Wen, Z. 2012. Assessment of policy alternatives and key technologies for energy conservation and water pollution reduction in Chinas synthetic ammonia industry. Journal of Cleaner Production 25: 96-105
Zolfi Bavariani, M., and Nouruzi, M. 2010. Effect of organic matter on residual phosphorus recovering in a calcareous soil. JWSS 14 (52): 87-98. (In Persian with English Summary).