تعیین قابلیت تصاویر ماهواره ای لندست 8 در تخمین سطح زیر کشت زعفران (نمونه موردی: شهرستان تربت حیدریه)

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 استادیار دانشکده کشاورزی و منابع طبیعی، دانشگاه تربت حیدریه

2 دانش آموخته کارشناسی ارشد، بیابان زدایی، دانشگاه صنعتی اصفهان

چکیده

زعفران محصولی استراتژیک است و برآورد سطح زیرکشت و در نهایت برآورد میزان تولید آن در محدوده­های جغرافیایی خاص، لازمه برنامه‌ریزی و تصمیم‌گیری‌های مقتضی جهت انجام مبادلات اقتصادی و تجاری می‌باشد. بنابراین، سرعت و دقت در این قبیل ارزیابی‌ها از اهمیت بالایی برخوردار است. استفاده تکنیک‌های سنجش از دور، به دلیل فراهم آوردن داده‌های به هنگام و قابلیت بالای آنالیز تصاویر و همچنین امکان مطالعه در یک محدوده وسیع و با دقت قابل قبول، می‌تواند کمک شایانی در این ارزیابی‌ها ایفا نماید. در این مطالعه به‌منظور تعیین قابلیت تصاویر ماهواره‌ای لندست 8 در برآورد و ارزیابی سطح زیرکشت محصول زعفران در شهرستان تربت‌حیدریه، پس از اعمال پیش ‌پردازش‌های اولیه بر روی تصاویر ماهواره‌ای با استفاده از روش‌های معمول پردازش تصاویر ماهواره‌ای، از جمله ترکیب باندی رنگ کاذب، آنالیز مؤلفه‌های اصلی، شاخص‌های گیاهی (NDVI، SAVI، EVI، DVI، RVI و TSAVI) و طبقه‌بندی نظارت‌شده اراضی تحت کشت زعفران شناسایی شدند. جهت ارزیابی صحت نتایج طبقه‌بندی، نقشه تولیدی با نقاط واقعیت زمینی مشخص‌شده از طریق GPS مورد بررسی قرار گرفت. ضـریب کاپـا و صـحت کلـی به ترتیب 88 و 98 درصد محاسبه شد. مساحت سطح زیر کشت زعفران در این مطالعه 4572/19503 هکتار برآورد گردید که با توجه به آمار سازمان جهاد کشاورزی مبنی بر 22000 هکتار سطح زیر کشت زعفران این شهرستان در سال 1393، می‌توان بیان داشت که تصاویر ماهواره‌ای لندست 8 از قابلیت بالایی برای تفکیک سریع اراضی زعفران در منطقه و تعیین سطح زیر کشت با دقت نسبتاً مناسب در مقیاس منطقه‌ای برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Capability of Landsat 8 satellite images to estimate the area under cultivation of saffron (case study: city of Torbat Heydarieh)

نویسندگان [English]

  • Jalil Farzadmehr 1
  • Kazem Tabaki Bajestani 2
1 Assistant Professor, Faculty of Agriculture and Natural Resources, University of Torbat Heydarieh
2 MSc Combating Desertification, Department of Natural Resources, Isfahan University of Technology
چکیده [English]

Saffron is a strategic product. It is necessary to manage the programming principles in order to estimate acreage and production. Therefore, the speed and accuracy of such assessments is very important. Using remote sensing techniques for providing updated data and high functionality as well as the possibility of studying a wide range of image analyses with an acceptable precision can help in the assessment.  In the present research, the area under cultivation of saffron in the city of Torbat Heydarieh was evaluated using Landsat 8 sensor data. After applying the primary processing on satellite images with using conventional techniques, satellite imagery processing including false color band combination, principal component analysis, vegetation index (NDVI, SAVI, EVI, DVI, RVI and TSAVI) and supervised classification of land under saffron cultivation were identified. Map production was done due to the fact that the earth was assessed via GPS in order to assess the classification. Kappa coefficient and overall accuracy were %88 and %98, respectively. The area under cultivation of saffron in this study was estimated to be 19503.4572 hectares. The results indicated that Landsat 8 satellite images have a high potential for rapid separation and identification of the area under cultivation of saffron in the region with relatively good accuracy and are appropriate tools to be used on a regional scale.

کلیدواژه‌ها [English]

  • Remote Sensing
  • saffron cultivation
  • LDCM

Alavi-Panah, S.K. 2013. The application of remote sensing in earth science (soil science). Tehran University Publications, Tehran. (In Persian).

Alavi-Panah, S.K. 2015. Fundamentals of Modern Remote Sensing and Interpretation of Satellite Images and Aerial Photos. Tehran University Publications, Tehran. (In Persian).

Alipour, F., Agh Khani, M.H., Abaspour Fard, M.H., and Sepehr, A. 2014. Separation and estimate the area under cultivation of crops with the help of satellite images ETM+ (case study: farm Astan Quds Razavi). Journal of Agricultural Machinery 4 (2): 244-254. (In Persian).

Alizadeh Rabie, H. 2013. Remote Sensing (principles and application), Samt Publications, Tehran. (In Persian).

Farzadmehr, J., Arzani, H., and Nazari Samani, A.A. 2005. An investingation of the capability of multi-temporal data of Landsat 7 satellite in estimating vegetation cover and production (Case study: arid region, Saveh, Bakhshali-Nemati). Iranian Journal Natural Resource 58 (3): 719-729. (In Persian with English Summary).

Farzadmehr, J., Arzani, H., Darvishsefat, A.A., and Jafari, A. 2005. Investigation in estimating vegetation cover and phytomass production, using enhanced Ladsat data in a semi arid region. Iranian Journal Natural Resource 57 (2): 339-351. (In Persian with English Summary).

Jensen, J.R. 1996. Textbook: Introductory Digital Image Processing: Radiometric and Geometric Correction. Prentice and Hall Inc, New York.

Khajeddin, S.J., and Pourmanafi, S. 2007. Determination of rice paddies areas, using digital data IRS sensors around Zayandeh Rud in Isfahan region. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Sciences 11 (1): 513-527. (In Persian).

Korhonen, L., Korhonen, K.T., Rautiainen, M., and Stenberg, P. 2006. Estimation of forest canopy cover: a comparison of field measurement techniques. Silva Fennica 40: 577-588.

Lillesand, T.M., and Kife, R.W. 2000. Remote Sensing and Image Interpretation. John Willey and Sons, New York.

Masoud, A.A., and Koike, K. 2005. Arid land salinization detected by remotely-sensed land cover changes: A case study in the Siwa region, NW Egypt. Journal of Arid Environments 66: 151-167.

Schmidt, H., and Karnicli, A. 2000. Remote sensing in the Seasonal variability of vegetation in a semi – arid envrionment. Journal of Arid Environments 45: 43-59.

Silleos, N.G., Alexandridis, T.K., Gitas, J.Z., and Perakis, K. 2006. Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto International 21 (4): 21-28.

Tabaki Bajestani, K., Khajeddin, S.J., Mokhtari, A.R., and Jafari, R. 2014. Identifying geothermal resources using remotely sensed data (Case study: South Khorasan province, Ferdows). Iranian Remote Sensing and GIS 6 (2): 31-49. (In Persian).

Tong, P.H.S., Auda, Y., Populus, J., Aizpuru, M., Al Habshi, A., and Blasco, F. 2004. Assessment from space of mangroves evolution in the Mekong Delta, in relation to extensive shrimp farming. International Journal Remote Sensing 25 (21): 4795-4812.

Wardlow, D.B., Eghbert, L.E., and Castens, j.H. 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. central great plains. Journal of Remote Sensing of Environment 108: 290-310

Ziaeian-Firoozabadi, P., Sayad-Bydhndy, L., and Eskandari-Nodeh, M. 2009. Mapping and estimating the area under rice cultivation in Sari city using satellite images Radarst. Geography Research Natural 68: 45-58. (In Persian).