با همکاری انجمن علمی گیاهان دارویی ایران

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل

2 استاد اصلاح نباتات، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل

3 استادیار اصلاح نباتات، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه زابل

4 استادیار اصلاح نباتات، گروه اصلاح نباتات و بیوتکنولوژی، دانشکده کشاورزی، دانشگاه بیرجند

چکیده

این پژوهش به‌منظور بررسی تأثیر تنش کم‌آبی و نانو ذرات نقره بر صفات مورفولوژیکی برخی اکوتیپهای زعفران انجام شد. آزمایش به‌صورت اسپیلت پلات فاکتوریل در قالب طرح بلوک‌های کامل تصادفی در سه تکرار در مزرعه تحقیقاتی دانشگاه بیرجند با دو سطح آبیاری کامل و کم‌آبی بر روی 10 اکوتیپ زعفران و در سه سطح نانو ذرات نقره شامل تیمار شاهد (آب مقطر)، 55 و 110 پی‌پی‌ام اجرا شد. صفاتی مانند تاریخ جوانه‌زنی (سبز شدن)، تعداد بنه جوانه‌زده، تعداد پنجه، تعداد برگ، طول برگ، طول غلاف و عرض برگ اندازه‌گیری شد. بهترین تاریخ خروج جوانه (سبز شدن) و بیشترین تعداد پنجه در تیمار آبیاری کامل، تحت تیمار آب مقطر (شاهد) مشاهده شد. بیشترین تعداد بنه جوانه‌زده در شرایط آبیاری در غلظت 55 پی‌پی‌ام نانو ذرات نقره در اکوتیپ قاین مشاهده شد. بیشترین طول برگ تحت تنش خشکی در تیمار با آب مقطر (شاهد) مشاهده شد. بیشترین تعداد برگ و عرض برگ تحت تنش خشکی در غلظت 55 پی‌پی‌ام نانوذره نقره مشاهده شد. بر اساس نتایج چنین استدلال شد برخی از صفات در شرایط تنش خشکی تحت نانو ذرات نقره با غلظت 55 پی-پی‌ام و برخی از صفات در آبیاری کامل و عدم استفاده از نانو ذرات نقره بهترین عملکرد داشتند که احتمالا می‌توان گفت در تنش خشکی میزان اتیلن افزایش می‌یابد، برخی از نتایج در این تحقیق می‌تواند به اثر نقره در جلوگیری از فعالیت اتیلن مرتبط باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Water Deficit and the Effect of Silver Nanoparticles on Morphological Traits onSome Saffron Ecotypes (Crocus sativus L.) in South Khorasan

نویسندگان [English]

  • Sara Sabertanha 1
  • BARAT ALI FAKHERI 2
  • Nafiseh Mahdinezhad 3
  • Zohre Alizadeh 4

1 MSc Student, Department of Plant Breeding and Biotechnology, College of Agriculture, University of Zabol.

2 Professor, Department of Plant Breeding and Biotechnology, College of Agriculture, University of Zabol

3 Assistant Professors, Department of Plant Breeding and Biotechnology, College of Agriculture, University of Zabol

4 Assistant Professors, Department of Plant Breeding and Biotechnology, College of Agriculture, University of Birjand

چکیده [English]

The present research was conducted to investigate the effect of water stress and silver nanoparticles on morphological traits of some saffron ecotypes. The experiment was done in form of split plot factorial in a randomized complete block design format in three replications at research farm of Birjand University with two levels including full and low water irrigation on 10 ecotypes of saffron and at three levels of silver nanoparticles including control treatment (distille water), 55 and 110 ppm. The traits such as germination date (germination), the number of germinated corm, the number of tillers, the number of leaves, leaf length, the pods length and leaf width were measured. The best date of emergence and the largest number of paws in complete irrigation treatment was observed under distilled water treatment (control). The highest number of corm germinated was observed in irrigated conditions at 55 ppm of silver nanoparticles in the Qaeen ecotype. The highest leaf length was observed under drought stress in the treatment with distilled water (control). The largest number of leaves and leaf width were observed under drought stress at 55 ppm of silver nanoparticles. According to the obtained results of this study, some of the traits at the conditions of drought stress under the silver nanoparticles with a concentration of 55 ppm and some of the traits in the full irrigation and lack of use of silver nanoparticles had the best performance, which it could be said that probably, in stress dryness, the amount of ethylene increases. Some of the obtained results of this study can be related to the effect of silver in preventing ethylene activity.

کلیدواژه‌ها [English]

  • Drought stress
  • corm number
  • tillers number
  • Onion
Alirezaee, F., Kiarostami, KH., and Hossein Zadeh Namin, M. 2014. The effect of nano silver phenolic compounds and rosmarinic acid in callus tissue culture of lavender. First National Congress of Electronic biology and natural sciences, Iran.
Dadkhah, M.R., Ehtesham, M., and Fekrat, H. 2011. Iranian Saffron Unknown Gem (planting, keeping, harvesting and processing). Second edition, Publications Shahr Ashub, 160 p.
Fallahghalhary, Gh.A., and Ahmadi, H. 2015. The estimation of phenological thresholds of Saffron cultivation in Isfahan province based on the daily temperature statistics. Saffron Agronomy and Technology 3 (1): 49-65. (In Persian with English Summary).
Gravatt, D.A., and Kirby, C.J. 1998. Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiology 18 (6): 411–417.
Harrison, R. 2002. Measurment of number massand size disturbtion of particles in the atmosphere.  Philosophical Transactions of the Royal Society of London 358: 2567-2580.
Hatami, M., Hhatamzadeh, A., Ghasemnezhad, M., Hasan sajedi, R., and Ghorbanpour, M. 2014. Changes in antioxidant enzymes activity in two Pelargonium zonale cultivars by nanosilver particles during dark storage. Plant Production Technology 5 (2): 99-108. (In Persian with English Summary).
Karami mehrian, S.S., Heydari, R., and Rahmani, F. 2013. Effects of silver nanoparticles on the physiological and morphological characteristics of tomato (Lycopersicun sculentum mill). Second National Conference on new issues in agriculture. (In Persian with English Summary).
Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., and Srinivasan K. 2011. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 79: 594-598.
Kazemi, M., Talebifar, M., Abedin, A., and Safariyan, A. 2011. Saffron (acquaintances, crop management and production, chemical composition and cost) 1st Ed. Ayyz Press. 75 p.
Krishnaraj, C., Jagan, E.G., Ramachandran, R., Abirami, S.M., Mohan, N., and Kalaichelvan, P.T. 2012. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochem 47 (4): 651–658.
Kumari, M., Mukherjee, A., and Chandrasekaran, N. 2009. Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment 407: 5243–5246.
Lee, W.M., Kwak, Jin., and An, Y.J. 2012. Effect of silver nanoparticles in crop plants Phaseolus radiates and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere 86: 491–499.
Li, W., Khan, M. A., Yamaguchi, S., and Kamiya, Y. 2007. Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regulation 46: 45-50.
Lin, D., and Xing, B. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science Technology 42: 5580-5585.
Marambio-Jones, C., and Hoek, EMV. 2010. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research 12 (5): 1531-1551.
Molina, R.V., Garcia-Luis, A., Cool, V., Ferrer, C., Valero, M., Navarro, Y., and Guardiola, J. L. 2004. Flower formation in the saffron Crocus (Crocus sativus L.). The role of temperature. Acta Hydrobiologica Sinica 650: 39-47.
Munzuroglu, O., Zengin, F.K.,  and Yahyagil, Z. 2008. The Abscisic acid levels of wheat (Triticum aestivum L. cv. Çakmak 79) seeds that were germinated under heavy metal (Hg++,Cd++,Cu++) stress. Gazi University Journal of Science 21: 1-7.
Najafi, S., Heidari, R., and Jamei, R. 2013. Influence of silver nanoparticles and magnetic field on phytochemical, antioxidant activity compounds and physiological factors of Phaseolus vulgaris. Technical Journal of Engineering and Applied Sciences 2812-2816.
Park, H.J., Kim, S.H., Kim, H.J., and Choi, S.H. 2006. A new composition of nanosized silica–silver for control of various plant diseases. Journal Plant Pathology 22: 295–302.
Ramezani, F., Shayanfar, A., and Rezaei, K.A. 2014. The effect of nano silver, nickel, zinc and zinc - copper on germination, establishment and enzymatic activity Medicago sativa seed. Iranian Journal of Field Crop Science 1 (45): 107-118. (In Persian with English Summary).
Rezvani, N., Sorooshzadeh, A., and Farhadi, N. 2012. Effect of nano-silver on growth of saffron in flooding stress. World Academy of Science Engineering and Technology 1: 517–522.
Rezvani, N., and Sorooshzadeh, A. 2014. Effect of nano-silver on root and bud growth of saffron in flooding stress condition. Saffron Agronomy and Technology 2 (1): 91-104 (In Persian with English Summary).
Ruffini Castiglione, M., and Cremonini, R. 2009. Nanoparticles and higher plants. Caryologia62: 161–165.
Seif Sahandi, M., Sorooshzadeh, A., Rezazadeh, H., and Naghdiabadi, HA. 2011. Effect of nano silver and silver nitrate on seed yield of borage. Journal of Medicinal Plants Research  5 (2): 171-175.
Salama, H.M.H. 2012. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology  3 (10): 190–197.
Savithramma, N., Ankanna, S., and Bhumi, G. 2012. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2: 61–68.
Shams, H., Ghoshchi, F., and Kasraie, P. 2015. The effect of foliar silver nano particles on yield and yield components sweet corn under water deficit stress. Iranian Journal of Dynamic Agriculture 12 (1): 13-21. (In Persian).
Sharma, P., Bhatt, D., Zaidi, M.G., Saradhi, P.P., Khanna, P.K., and Arora, S. 2012. Silver nanoparticle mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology 167: 2225–2233.
Shirmohammadi, Z., and Khani, A. 2003. Evaluation of the methods and the number of irrigation water on leaf area index canopy temperature and saffron plant performance. Shiraz University master's thesis. (In Persian with English Summary).
Tabatabai Far, F. S., Amooaghaei, R., and Ahadi, A.M. 2014. Oxygenase 1 gene expression is influenced by silver nanoparticles in black mustard. National Science and Engineering Conference on Environment and Sustainable Development. (In Persian with English Summary).
Turkova, N.S. 1944. Growth reactions in plants under excessive watering. Doklady Academy Science 42 (3): 87–90.
Yin, L., Colman, B.P., McGill, B.M., Wright, J.P., and Bernhardt, E.S. 2012. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 7 (10): e47674.