In collaboration Iranian Medicinal Plants Society

Document Type : Research Paper

Authors

1 MSc in Agricultural Biotechnology, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran.

2 Associate Professor, Crop and Horticultural Science Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran.

3 Assistant Professor, Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran.

Abstract

Crocus sativus is a triploide plant and propagating by vegetative propagation. Therefore, trait segregation and genetic diversity are limited in this plant. EST-SSR markers have some priority, for example co-dominant inheritance, locus specific and highly polymorphic against all other markers. Due to the availability of transcriptome data, it is possible to develop EST-SSR markers and polymorphism studies in saffron. Development of EST-SSR markers in C. sativus make it possible to study genetic diversity and molecular polymorphism in different genotypes. In order to develop EST-SSR marker for C. sativus, we downloaded public available C. sativus RNA-seq data. Quality control and preprocessing of raw reads were done using FastQC and Trimmomatic tools, respectively. We performed de novo transcriptome assembly using RNA-Bloom. CD-HIT-EST was used in order to reduce redundancy in transcriptome assembly. The assembly quality was evaluated using the BUSCO software and completeness of transcriptome assembly was 90%. After achieving to high quality transcriptome assembly of C. sativus, EST-SSRs were identified by MISA tool. The EST-SSRs primers were designed using Primer3. 35459 SSR-containing sequences were detected and primer pairs were designed for them. Ten EST-SSR primer pairs were randomly selected to amplify C. sativus DNA. Seven pairs of the primers (70%) generated clear and reproducible bands with the expected size. These EST-SSR markers can be functional and useful for C. sativus genetic studies.

Keywords

Main Subjects

Alsayied, N.F., Fernández, J.A., Schwarzacher, T., and Heslop-Harrison, J.S. 2015. Diversity and relationships of Crocus sativus and its relatives analysed by inter-retroelement amplified polymorphism (IRAP). Annals of Botany 116: 359-368.
Andrews, S. 2010. Fast QC: a quality control tool for high throughput sequence data.
Babaei, S., Talebi, M., Bahar, M., and Zeinali, H. 2014. Analysis of genetic diversity among saffron (Crocus sativus) accessions from different regions of Iran as revealed by SRAP markers. Scientia Horticulturae 171: 27-31.
Beier, S., Thiel, T., Münch, T., Scholz, U., and Mascher, M. 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics 33: 2583-2585.
Bolger, A.M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.
Busconi, M., Wischnitzki, E., Del Corvo, M., Colli, L., Soffritti, G., Stagnati, L., Fluch, S., Sehr, E.M., de los Mozos Pascual, M., and Fernández, J.A. 2021. Epigenetic variability among saffron crocus (Crocus sativus L.) accessions characterized by different phenotypes. Frontiers in Plant Science 12: 642631.
Bushmanova, E., Antipov, D., Lapidus, A., and Prjibelski, A.D. 2019. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. GigaScience 8: 1-13.
Cai, K., Zhu, L., Zhang, K., Li, L., Zhao, Z., Zeng, W., and Lin, X. 2019. Development and characterization of EST-SSR markers From RNA-Seq data in phyllostachys violascens. Frontiers in Plant Science 10: 50.
Chen, J., Li, R., Xia, Y., Bai, G., Guo, P., Wang, Z., Zhang, H., and Siddique, K.H.M. 2017. Development of EST-SSR markers in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) based on de novo transcriptomic assemblies. PLOS ONE 12: e0184736.
Doyle, J. 1991. DNA Protocols for Plants. In: Hewitt, G.M., Johnston, A.W.B., Young, J.P.W. (Eds.), Molecular Techniques in Taxonomy. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 283-293.
Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28: 3150-3152.
Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., MacManes, M.D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C.N., Henschel, R., LeDuc, R.D., Friedman, N., and Regev, A. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8: 1494-1512.
Hu, J., Liu, Y., Tang, X., Rao, H., Ren, C., Chen, J., Wu, Q., Jiang, Y., Geng, F., and Pei, J. 2020. Transcriptome profiling of the flowering transition in saffron (Crocus sativus L.). Scientific Reports 10: 9680.
 Jain, M., Srivastava, P.L., Verma, M., Ghangal, R., and Garg, R. 2016. De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Scientific Reports 6: 22456.
Lu, Y., Zhang, C., Li, X., Liang, Y., Wang, Y., and Li, W. 2020. Development of EST-SSR markers and their application in the analysis of the genetic diversity of Sophora japonica Linn. Trees 34: 1147-1156.
Nemati, Z., Harpke, D., Gemicioglu, A., Kerndorff, H., and Blattner, F.R. 2019. Saffron (Crocus sativus) is an autotriploid that evolved in Attica (Greece) from wild Crocus cartwrightianus. Molecular Phylogenetics and Evolution 136: 14-20.
Nemati, Z., Zeinalabedini, M., Mardi, M., Pirseyediand, S.M., Marashi, S.H., and Khayam Nekoui, S.M. 2012. Isolation and characterization of a first set of polymorphic microsatellite markers in saffron, Crocus sativus (Iridaceae). American Journal of Botany 99: e340-e343.
Rubio-Moraga, A., Castillo-López, R., Gómez-Gómez, L., and Ahrazem, O. 2009. Saffron is a monomorphic species as revealed by RAPD, ISSR and microsatellite analyses. BMC Research Notes 2: 189.
Seppey, M., Manni, M., and Zdobnov, E.M. 2019. BUSCO: Assessing genome assembly and annotation completeness. In  Kollmar M (Ed.), Gene Prediction: Methods and Protocols. Springer New York, New York, NY, pp. 227-245.
Siracusa, L., Gresta, F., Avola, G., Albertini, E., Raggi, L., Marconi, G., Lombardo, G.M., and Ruberto, G. 2013. Agronomic, chemical and genetic variability of saffron (Crocus sativus L.) of different origin by LC-UV–vis-DAD and AFLP analyses. Genetic Resources and Crop Evolution 60: 711-721.
Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., and Rozen, S.G. 2012. Primer3—new capabilities and interfaces. Nucleic Acids Research 40: e115-e115.
Wedemeyer, A., Kliemann, L., Srivastav, A., Schielke, C., Reusch, T.B., and Rosenstiel, P. 2017. An improved filtering algorithm for big read datasets and its application to single-cell assembly. BMC Bioinformatics 18: 324.
Wu, Q., Zang, F., Xie, X., Ma, Y., Zheng, Y., and Zang, D. 2020. Full-length transcriptome sequencing analysis and development of EST-SSR markers for the endangered species Populus wulianensis. Scientific Reports 10: 16249.
Yue, J., Wang, R., Ma, X., Liu, J., Lu, X., Balaso Thakar, S., An, N., Liu, J., Xia, E., and Liu, Y. 2020. Full-length transcriptome sequencing provides insights into the evolution of apocarotenoid biosynthesis in Crocus sativus. Computational and Structural Biotechnology Journal 18: 774-783.
Zhang, C., Wu, Z., Jiang, X., Li, W., Lu, Y., and Wang, K. 2021. De novo transcriptomic analysis and identification of EST-SSR markers in Stephanandra incisa. Scientific Reports 11: 1059.
Zhang, Z., Xie, W., Zhao, Y., Zhang, J., Wang, N., Ntakirutimana, F., Yan, J., and Wang, Y. 2019. EST-SSR marker development based on RNA-sequencing of E. sibiricus and its application for phylogenetic relationships analysis of seventeen Elymus species. BMC Plant Biology 19: 235.