In collaboration Iranian Medicinal Plants Society

Document Type : Research Paper

Authors

1 Ph.D. Student of Plant Breeding, Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.

2 Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.

3 Associate Professor, Department of Plant College of Agriculture and Natural resources, University of Tehran, Karaj, Iran

4 Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

Abstract

Cultivated saffron (Crocus sativus L.) boasts remarkable commercial value due to its possessing three pivotal metabolites: crocin, picrocrocin, and safranal. The significance of obtaining these metabolites, particularly crocin, from sources other than cultivated saffron has grown substantially, primarily driven by native wild saffron species in Iran. In this ongoing study, High-Performance Liquid Chromatography (HPLC) has been harnessed as a potent analytical tool for the identification of these metabolites in two wild saffron species, Khazar (C. caspius) and Ziba (C. specious), alongside the cultivated variety. Furthermore, bioinformatics tools have been employed to extract nucleotide and protein sequences, thereby facilitating the prediction of protein structures for genes integral to the biosynthesis process of these notable apocarotenoids in an in-silico manner. The research findings have showcased the presence of crocin across all analyzed samples, albeit in varying quantities. Specifically, the crocin content in the cultivated saffron, Ziba, and Khazar species accounted for 26.76%, 2.8%, and 0.74% of dry weight matter, respectively. However, the amount of picrocrocin and safranal metabolites in cultivated species was 8.4 and 0.03 percent, respectively, but there were no detectable amounts of these apocarotenoids in the studied wild species. , The existence of crocin in wild species has made hope for conducting research and searching in wild species for these effective substances and implementing breeding programs or genetic manipulation for the mentioned species.

Keywords

Main Subjects

Ahrazem, O., Argandona, J., Fiore, A., Rujas, A., Rubio-Moraga, A., Castillo, R. & Gomez-Gomez, L.  (2019). Multi-species transcriptome analyses for the regulation of crocins biosynthesis in Crocus. BMC Genomics, 20,  320. doi.org/10.1186/s12864-019-5666-5.
Alonson, G.L., Salinas, M.R., Sánchez-Fernández, M.A., & Garijo, J. (2001). Note. Safranal content in Spanish saffron. Revista de Agaroquimica y Tecnologia de Alimentos, 7(3), 225-229. doi.org/10.1106/WT2H-DQVP-NK9E-HWAT.
Alsayied, N.F., Fernandez, J.A., Schwarzacher, T., & Heslop-Harrison, J.S. (2015). Diversity and relationships of Crocus sativus and its relatives analysed by inter-retroelement amplified polymorphism (IRAP). Annals of Botany, 116, 359-368. doi.org/10. 1093/aob/mcv103.
Assimopoulou, A., Sinakos. Z., & Papageorgiou, V. (2005). Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytotherapy Research, 19(11), 997-1000.  doi.org/10.1002/ptr.1749.
Agostino, N.D., Pizzichini, D., Chiusano, M.L., & Giuliano, G. (2007). An EST database from saffron stigmas. BMC Plant Biology, 7(53), 1-8. doi.org/10.1186/1471-2229-7-53.
Baba, S.A., Mohiuddin, T., Basu, S., Swarnkar, M.K., Malik, A.H., Wani, Z.A., Abbas, N., Singh, A.K., & Ashraf, N. (2015). Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genomics, 16(698), 1-14. https://doi.org/10.1186/s12864-015-1894-5.
Caballero-Ortega, H., Pereda-Miranda, R., & Abdullaev, F.I. (2005). HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chemistry, 100(3), 1126-1131. doi.org/10.1016/j.foodchem.2005.11.020.
Caballero-Ortega, H., Pereda-Miranda, R., Riverón-Negrete, L., Hernández, J.M., Medécigo-Ríos, M., Castillo-Villanueva, A., & Abdullaev, F.I. (2004). Chemical composition of saffron (Crocus sativus L.) from four countries. Acta Horticulturae (ISHS), 650, 321-326. doi.org/10.17660/Ac taHortic.2004.650.39.
Castillo, R., Fernandez, J.A., & Gomez-Gomez, L. (2005). Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiology 139, 674-689. doi.org/10. 1104/ 105.067827.
Ebrahimzadeh, H., Saboora, A., Noori-Dalooii M.R., & Ghaffari, S.M. (1998). Chromosomal studies on four Iranian Crocus species (Iridaceae). Iran Journal of Botany, 7(2), 179-192.
Fernandez, J.A. (2004). Biology, biotechnology, and biomedicine of saffron. Recent Research Developments in Plant Science, 127-159.
Ghalamkari, A. (2016). Morphological and phytochemical evaluation of Khorasan saffron samples. M.Sc. Thesis, Faculty of Agriculture, University of Tehran, Iran. (In Persian with English Summary).
Golshani, F., Fakheri B.A., Solouki, M., Mahdinezhad, N., & Kiani Feriz, M.R. (2019). Study of phylogenetic relationships of some wild and crop species of Iranian Crocus by ITS nuclear loci. BIOCELL, 43(3), 225-232.
Gregory, M.J., Menary, R.C., & Davies, N.W. (2005). Effect of drying temperature and airflow on the production and retention of secondary metabolites in saffron. Journal of Agricultural and Food Chemistry, 53(15), 5969–5975.
Hadizadeh, F., Mohajeri, S.A., & Seifi, M. (2010). Extraction and purification of crocin from saffron stigmas employing a simple and efficient crystallization method. Pakistan Journal of Biological Sciences, 13, 691-698. doi.org/10. 3923/pjbs.2010.691. 698.
Haq, S.A.U., Salami, S.A., & Husaini, A.M. (2022). Bioinformatics for Saffron-Omics and Crop Improvement. In: Vakhlu, J., Ambardar, S., Salami, S.A., Kole, C. (eds) The Saffron Genome. Compendium of Plant Genomes. Springer, Cham. doi.org/10.1007/978-3-031-10000-0_4.
Hassanlou, M., Azimi Moghaddam, M., Salami, S.A., & Mohseni Fard, E. (2023). Investigating the expression of some genes related to the production of apocarotenoids in the growth stages of stigma and tepal of cultivated saffron and two wild species. Saffron Agronomy and Technology, 11(1), 71- 85. doi: 10.22048/jsat.2023.387897.1482.
Heslop-Harrison, JS., & Schwarzacher, T. (2012). Genetics and genomics of crop domestication. In: Altman A, Hasegawa PM, eds. Plant biotechnology and agriculture: prospects for the 21st century. Dordrecht: Elsevier, 3–18.
Husaini, A.M., Wani, S.A., Sofi, P., Rather, A.G.S. (2009). Bioinformatics for saffron (Crocus sativus L.) improvement. Communications in Biometry and Crop Science, 4(1), 3–8.
Jain, M., Srivastava, P.L., Verma, M., Ghangal, R., & Garg, R. (2016). De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Scientific Reports, 6: 22456-22468. doi.org/10.1038/ srep22456.
Jimenez-Lopez, J.C, Lopez-Valverde, F.J, Robles-Bolivar, P, Lima-Cabello, E, Gachomo, E.W, & Kotchoni, S.O. (2016). Genome-wide identification and functional classification of tomato (Solanum Lycopersicum) aldehyde dehydrogenase (ALDH) gene superfamily. PLoS ONE, 11, e0164798. doi:10.1371/journal.pone.0164798.
Kabiri, M., Rezadoost, H., & Ghassempour, A. (2017). A comparative quality study of saffron constituents through HPLC and HPTLC methods followed by isolation of crocins and picrocrocin. LWT-Food Science Technology, 84, 1-9. doi.org/10.1016/j.lwt. 2017. 05.033.
Khansarinejhad, B., Hasandokht, M.R., & Nazeri, V. (2014). Genetic study of two wild species of saffron using morphological traits and RAPD molecular markers. Breeding of Agronomic and Horticultural Crop, 2(1), 105-118. https://civilica.com/doc/488281.
Lozano, P., Castellar, M.R., Simancas M.J., & Iborra, J.L. (1999). Quantitative high-performance liquid chromatographic method to analyse commercial saffron (Crocus sativus L.) products. Journal of Chromatography A, 830, 477-483.
Mashmoul, M., Azlan, A., Yusof, B.N.M., Khaza'ai, H., Mohtarrudin, N., & Boroushaki, M.T. (2014). Effects of saffron extract and crocin on anthropometrical, nutritional, and lipid profile parameters of rats fed a high-fat diet. Elsevier, 180-187. doi.org/10. 1016/j .jff.2014. 03.017.
Mathew, B., & Brighton, C.A. (1977). Four central Asian Crocus species (Liliaceae). Iran Journal Botany, 1(2), 123-135.
Namayandeh, A., Nemati, Z., Kamelmanesh, M.M., Mokhtari, M., & Mardi, M. (2012). Genetic relationships among species of Iranian Crocus (Crocus spp.). Crop Breeding Journal, 3(1), 61-67.
Pavarini, D.P., Pavarini, S.P., Niehues, M., & Lopes, N.P. (2012). Exogenous influences on plant secondary metabolite levels. Anim. Animal Feed Science and Technology, 176(1), 5–16. doi.org/10. 1016/j.anifeedsci. 2012. 07.002.
Soeda, S., Ochiai, T., Shimeno, H., Saito, H., Abe, K., Tanaka, H., & Shoyama, Y. (2007). Pharmacological activities of crocin in saffron. Journal of Natural Medicines, 61(2), 102-111. https://doi.org/10.1007/s11418-006-0120-9.
Sujata. V., Ravishankar, G.A., & Venkataraman. L.V. (1992). Methods for the analysis of the saffron metabolites crocin, crocetins, picrocrocin, and safranal for the determination of the quality of the spice using thin-layer chromatography, high-performance liquid chromatography and gas chromatography. Journal of Chromatography, 624, 497-502. doi.org/10 .1016/0021-9673(92)85699-T.
Taheri-Dehkordi, A., Naderi, R., Martinelli, F., & Salami, S.A. (2020). A robust workflow for indirect somatic embryogenesis and cormlet production in saffron (Crocus sativus L.) and its wild allies; C. caspius and C. speciosus. Heliyon, 6, 1-10. doi.org/10.1016/j.heliyon. 2020. e 05841.
Tofighi, Z., Mohamadi, H., Shokrzadeh, M., Ghahremani, M.H., Noori, S., & Habibi, E. (2017). Cytotoxic effect of hydro-alcoholic extract of Crocus caspius on breast cancer cell lines. Journal of Mazandaran University Medical Sciences, 27(151), 32-40.
Vahedi, M., Salami, S.A., Shokrpour, M., & Rezadoost, H. (2019). Comparative performance of transcriptome assembly programs for saffron (Crocus sativus L.). Saffron Agronomy and Technology, 7(1), 69-80. doi.org/10.220480/jsat.2017.87859.1235. (In Persian with English Summary).
Vahedi, M., Kabiri, M. Salami, S.A., Rezadoost, H., Mirzaie, M., & Kanani, M.R. (2018). Quantitative HPLC-based metabolomics of some Iranian saffron (Crocus sativus L.) accessions. Elsevier, 118, 26-29. doi.org/10.1016/j.indcrop.2018.03.024.
Valle, García-Rodriguez., Serrano-Díaz, M., López-Córcoles, C., Carmona, M., & Alonso, G.L. (2014).  Tarantilis P.A., determination of saffron quality by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 62(32), 8068–8074. doi.org/10.1021/ j f50 19356.
Zeka, K., Ruparelia, K.C., Continenza, M.A., Stagos, D., Vegliò, F., & Arroo, R.R. (2015). Petals of Crocus sativus L: as a potential source of the antioxidants crocin and kaempferol. Fitoterapia, 107, 128–134. doi.org/10.1016/j.fitote.2015.05.014.
Zinati, Z., Shamloo-Dashtpagerdi, R., & Behpouri, A. (2016). In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma. Molecular Biology Research Communications, 5(4), 233-246.