با همکاری انجمن علمی گیاهان دارویی ایران

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، ایران

2 دانشجوی کارشناسی ارشد، فیزیولوژی و اصلاح گیاهان دارویی، دانشکده کشاورزی، دانشگاه زنجان، ایران

چکیده

به­منظور بررسی صفات کمی و کیفی گلبرگ زعفران تحت تأثیر منابع مختلف نیتروژن، آزمایشی در قالب طرح بلوک‌های کامل تصادفی در سه تکرار در سال زراعی 1395-1394 در مزرعه تحقیقاتی دانشگاه زنجان اجرا شد. تیمارهای آزمایش شامل، کود ازتوبارور-1 (حاوی ازتوباکتر وینلندی) در دو سطح (1/0 و2/0 درصد)، کود نیترو کارا (حاوی باکتری آزورایزوبیوم کائولینودا) در دو سطح (1 و 2 درصد)، ترکیب هر دو کود زیستی در چهار سطح {(1 درصد نیتروکارا + 1/0 درصد ازتوبارور-1)، (1 درصد نیتروکارا + 2/0 درصد ازتوبارور-1)، (2 درصد نیتروکارا + 1/0 درصد ازتوبارور-1)، (2 درصد نیتروکارا + 2/0 درصد ازتوبارور-1)}، یک سطح نیتروژن (40کیلوگرم در هکتار) و شاهد بودند. بررسی صفات نشان داد بالاترین عملکرد گلبرگ و کلاله خشک در کاربرد 2/0 درصد ازتوباکتر به­دست آمد. هم­چنین در تیمار 2 درصد آزورایزوبیوم بیشترین وزن خشک تک‌گل مشاهده شد. بالاترین میزان نیتروژن برگ و کلروفیل کل در تیمارهای 2/0 درصد ازتوباکتر و 40 کیلوگرم در هکتار نیتروژن به­دست آمد. هم­چنین بیشترین سطح برگ در تیمار 40 کیلوگرم در هکتار نیتروژن حاصل شد. در بررسی فعالیت آنتی‌اکسیدانی مشخص گردید که بیشترین فنل و آنتوسیانین کل و ظرفیت آنتی‌اکسیدان گلبرگ در تیمار ازتوباکتر 1/0 درصد و بالاترین میزان فلاونوئید در تیمار 1 درصد آزورایزوبیوم مشاهده شدند. نتایج حاکی از آن بود که کاربرد تیمار‌های استفاده شده سبب افزایش عملکرد گلبرگ زعفران شد و تیمار 2/0 درصد ازتوباکتر جهت افزایش عملکرد کمی و تیمار 1/0 درصد ازتوباکتر برای بالا بردن خواص آنتی‌اکسیدانی قابل توصیه می­باشند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of bio-fertilizers and nitrogen on quantitative and qualitative characteristics of tepals in saffron (Crocus sativus L.)

نویسندگان [English]

  • Azizollah Kheiry 1
  • Hajar Parsa 2
  • Mohsen Sani Khani 1
  • Farhang Razavi 1

1 Assistant Professor, Department of Horticulture, Faculty of Agriculture, Zanjan University, Zanjan, Iran

2 MSc Student, Physiology and Medicinal Plants Breeding, Faculty of Agriculture, Zanjan University, Zanjan, Iran

چکیده [English]

In order to investigate the effect of different nitrogen sources on some quantitative and biochemical characteristics of Saffron Petals, an experiment was conducted based on randomized complete block design with three replications on the Research Farm of University of Zanjan. The treatments were Azotobarvar-1 bio-fertilizer (containing free-living nitrogen-fixing bacteria Azotobacter vinelandii) with two levels (0.1 and 0.2 percent), Nitrokara (containing symbiotic and free-living nitrogen-fixing bacteria Azorhizobium caulinodan) with two levels (1 and 2 percent) and combinations of both of them with four treatments (1percent Nitrokara + 0.1 percent Azotobarvar-1, 1 percent Nitrokara + 0.2 percent Azotobarvar-1, 2 percent Nitrokara + 0.1 percent Azotobarvar-1, 2 percent Nitrokara + 0.2 percent Azotobarvar-1) compared to control and one nitrogen level (40 kg/ha). The results showed that the highest yield of petals and stigma were obtained in 0.2 percent Azotobacter while the highest average dry flower weight resulted in 2 percent Azorhizobium treatment. The highest leaf nitrogen content and total chlorophyll were obtained in 0.2 percent Azotobacter and 40 kg/ha of nitrogen treatments. Also 40 Kg/ha nitrogen resulted in the highest leaf area. The highest antioxidant, total phenol and anthocyanin of tepal were achieved in 0.1 percent Azotobacter while the highest amount of flavonoid was observed in 1 percent Azorhizobium. The results showed that the application of all treatments increased yield of saffron petals. The 0.2 percent Azotobacter was the best treatment in terms of quantity of petal yield and 0.1 percent Azotobacter resulted in highest antioxidant content and therefore it can be recommended.


کلیدواژه‌ها [English]

  • Anthocyanin
  • Flavonoid
  • Antioxidant activity
  • Phenol
  • Chlorophyll
Abbasniayzare, S.K., Sedaghathoor, S., and Dahkaei, M.N.P. 2012. Effect of biofertilizer application on growth parameters of Spathiphyllum illusion. American-Eurasian Journal of Agricultural and Environmental Sciences 12 (5): 669-673.
Arnon, A.N. 1967. Metod of extraction of chlorophyll in the plants. Agronomy Journal 23: 112-121.
Aseri, G.K., Jain, N., Panwar, J., Rao, A.V., and Meghwal, P.R. 2008. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegranate (Punica granatum L.) in Indian Thar Desert. Scientia Horticulturae 117: 130–135.
 Aytekin, A., and Acikgoz, A.O. 2008. Hormone and microorganism treatments in the cultivation of saffron (Crocus sativus L.) plants. Molecules 13: 1135-1146.
Babu, A.N., Jogaiah, S., Itoc, S.i., Nagaraj, A.K., and Tran, L.S.P. 2015. Improvement of growth, fruit weight and early blight disease protection of tomato plants byrhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenoloxidase. Plant Science 231: 62–73.
Basti, A.A., Moshiri, E., Noorbala, A.A., Jamshidi, A.H., Abbasi, S.H., and Akhondzadeh, S. 2007. Comparison of petal of Crocus sativus L. and fluoxetine in the treatment of depressed outpatients: a pilot double-blind randomized trial. Progress in Neuro-Psychopharmacology and Biological Psychiatry 31 (2): 439-442.
Bongue-Bartelsman, M., and Phillips, D.A. 1995.  Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiology and Biochemistry 33 (5): 539–546.
Chang, C., Yang, M., Wen, H., and Chern, J. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10: 178-182.
Demir, S. 2004. Influence of arbuscular mycorrhiza on some physiological growth parameters of pepper. Turkish Journal of Biology 28: 85–90.
Edahiro, J.I., Nakamura, M., Seki, M., and Furusaki, S. 2005. Enhanced accumulation of anthocyanin in cultured strawberry cells by repetitive feeding of L-phenylalanine into the medium. Journal of Bioscience and Bioengineering 99 (1): 43–47.
Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78 (1): 9-19.
Fageria, N.K. 2007. Yield physiology of rice. Journal of Plant Nutrition 30: 843–879.
Fayazi, F., Abdali Mashhadi, A.R., Koochekzade, A., Papzan, A., and Arzanesh, M.H. 2016. The effect of organic and biological fertilizers application on yield and some morphological characteristics in Coneflower (Echinaceae purpurea L.). Iranian Journal of Filed Crop Science 47 (2): 301-314.
Ghavami, N., Alikhani, H.A., Pourbabaee, A.A., and Besharati, H. 2016. Study the effects of siderophore-producing bacteria on zinc and phosphorous nutrition of Canola and Maize plants. Communications in Soil Science and Plant Analysis 47 (12): 1517-1527.
Giusti, M.M., and Wrolstad, R.E. 2003. Characterization and measurement of anthocyanins by UV visible spectroscopy. Current Protocols in Food Analytical Chemistry 14 (3): 217-225.
Gould, K., Davies, K.M., and Winefield, C. eds. 2008. Anthocyanins: biosynthesis, functions, and applications. Springer 2009. pp. 169-185.
Han, H.S., and Supanjani Lee, K.D. 2006. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environment 52: 130-136.
Ibrahim, M.H., Jaafar, H.Z., Rahmat, A., and Rahman, Z.A. 2010. The relationship between phenolics and flavonoids production with total nonstructural carbohydrate and photosynthetic rate in Labisia pumila Benth. under high CO2 and nitrogen fertilization. Molecules 16 (1): 162-174.
Janowska, B., and Jerzy, M. 2003. Effect of Gibberelic acid on postharvest leaf longevity of Zantedeschia elliottiana (W. Wats.) Engl. Journal of Fruit and Ornamental Plant Research 11: 69-76.
Kalra, Y. 1998. Hanbook of Reference Methods for Plant Analysis. CRC Press. Boca Raton.
Kazuma, K., Noda, N., and Suzuki, M. 2003. Flavonoid composition related to petal color in different lines of Clitoria ternatea. Phytochemistry 64: 1133-1139.
Kosar, M., Goger, F., and Baser, K.H.C. 2011. In vitro antioxidant properties and phenolic composition of Salvia halophila hedge from turkey. Food Chemistry 129: 374-379.
Lee, KB., de Backer, P., Aono, T., Liu, CT., Suzuki, S., Suzuki, T., Kaneko, T., Yamada, M., Tabat, S., Kupfer, D.M., Najar, F.Z., Wiley, G.B., Roe, B., Binnewies, T.T., Ussery, D.W., Haeze, W.D., Herder, J.D., Gevers, D., Vereecke, D., Holsters, M., and Oyaizu, H. 2008. The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genomics 9 (1): 271.
Marzec, M., Muszynska, A., and Gruszka, D. 2013. The role of strigolactones in nutrient-stress responses in plants. International Journal of Molecular Sciences 14 (5): 9286-9304.
Meda, A., Lamien, C. E., Romito, M., Millogo, J., and Nacoulma, O.G. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their scavenging activity. Food Chemistry 91: 571-577.
Miliauskas, G., Venskutonis, P.R., and Vanbeek, T.A. 2004. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry 85: 231-237.
Mori, T., and Sakurai, M. 1996. Riboflavin affects anthocyanin synthesis in nitrogen culture using strawberry suspended cells. Journal of Food Science 61 (4): 698-702.
 Naik, S.K., and Barman, D. 2006. Response of foliar application of nitrogen on flowering in Cymbidium hybrid. Journal of Ornamental Horticulture 9 (4): 270-273.
Norbaek, R., and Kondo, T. 2002. Flower pigment composition of crocus species and cultivars used for a chemotaxonomic investigation. Biochemical Systematic and Ecology Journal 30 (8): 763-791.
Omidi, H., Naghdibadi, H.A., Golzad, A., Torbati, H., and Fotookian, M.H. 2010. Effect of chemical and bio-fertilizer nitrogen on qualitative and quantitative yield of saffron (Crocus sativus L.). Journal Medicinal Plants 30 (2): 98-109. (in Persian with English Summary).
Osman, M.E.H., El-Sheekh, M.M., El-Naggar, A.H., Saly, F., and Gheda, S.F. 2010. Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biology and Fertility of Soils 46: 861–875.
Pyo, Y.H., Lee, T.C., Logendra, L., and Rosen, R.T. 2004. Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chemistry 85 (1): 19-26.
Rahimzadeh, S., Sohrabi, Y., Heidari, Gh., Eivazi, A.R., and Hoseini, T. 2011. Effect of bio and chemical fertilizers on yield and quality of dragonhead (Dracocephalum moldavica L.). Iranian Journal of Medicinal and Aromatic Plants 27 (1): 81-96.) In Persian with English Summary).
Saidana, D., Braham, M., Boujnah, D., Ben Mariem, F., Ammari, S., and Ben El Hadj, S. 2009. Nutrient stress, ecophysiological, and metabolic aspects of olive tree cultivars. Journal Plant Nutrition 32: 129–145.
  Subramanian, K.S., Santhanakrishnan, P., and Balasubramanian, P. 2006. Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Horticulturae 107 (3): 245-253.
Wang, S.Y., and Jiao, H. 2000. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals and singlet oxygen. Journal of Agricultural and Food Chemistry 48 (11): 5677–5684.
Wani, S.A., Chand, S., Wani, M.A., Ramzan, M., and Hakeem, K.R. 2016. Azotobacter chroococcum–A Potential Biofertilizer in Agriculture: An Overview. In Soil Science: Agricultural and Environmental Prospectives. Springer International Publishing. pp. 333-348.
Yañez-Mansilla, E., Cartes, P., Reyes-Díaz, M., Ribera-Fonseca, A., Rengel, Z., and Alberdi, M. 2015. Leaf nitrogen thresholds ensuring high antioxidant features of Vaccinium corymbosum cultivars. Journal of Soil Science and Plant Nutrition 15 (3): 574-586.
Youssef, A.A., Edris, A.E., and Gomaa, A.M. 2004. A comparative study between some plant growth regulators and certain growth hormones producing microorganisms on growth and essential oil composition of (Salvia officinalis L.). Plant Annals of Agricultural Science 49: 299-311.
Zhang, Z., Liao, L., Moore, J., Wu, T., and Wang, Z. 2009. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chemistry 113 (1): 160-165.