با همکاری انجمن علمی گیاهان دارویی ایران

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانش آموخته دکتری رشته بیوتکنولوژی کشاورزی، گروه به‌نژادی و بیوتکنولوژی گیاهی، دانشکده کشاورزی دانشگاه تبریز، تبریز، ایران.

2 استادیار، گروه زیست فناوری مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران.

3 دانشیار، گروه بهنژادی و بیوتکنولوژی گیاهی، دانشکده کشاورزی دانشگاه تبریز، تبریز، ایران

چکیده

آپوکاروتنوئیدها عامل ارزش اقتصادی در گیاه زعفران هستند، بنابراین جداسازی و مطالعه ژن‌های درگیر در متابولیسم آپوکاروتنوئیدها از اهمیت ویژه‌ای برخوردار است. در این تحقیق، باتوجه به اهمیت ژن CsUGT در بیوسنتز کروسین و به منظور شناخت بیشتر خصوصیات پروتئین CsUGT، اقدام به جداسازی، همسانه‌سازی و انتقال این ژن به باکتری E.coli سویه DH5α شد. بدین منظور، ابتدا توالی‌ پروتئینی ژن‌ مورد نظر بدست آمد و سپس ویژگی‌های فیزیکی و شیمیایی و فیزیولوژی پروتئین‌ CsUGT توسط سرورها و ابزارهای Protparam، SOPMA، ProtScale، Pfam، ProtComp، SignalP، TMHMM و ChloroP بررسی شد. همچنین با استفاده از سرور Swiss-Model ساختار سه‌بعدی این پروتئین مورد بررسی قرار گرفت و جهت اعتبار سنجی ساختاری مدل ترسیم شده سه‌بعدی، نمودار راماچاندران ترسیم گردید. با توجه به نتایج حاصل، پروتئین CsUGT دارای ثبات در دماهای بالا، قطبی و فاقد دمین آب‌گریز می‌باشد . این پروتئین دارای 462 اسید آمینه و حاوی توالی حفاظت شده پروتئین‌های خانواده گلیکوزیل‌ترانسفراز است. پروتئین CsUGT فاقد ‌ پپتیدهایی با نقش سیگنالی یا سیگنال‌های اتصال دهنده است و جایگاهی سیتوپلاسمی دارد. این تحقیق امکان جداسازی ژن CsGTS زعفران را فراهم و شرایط انتقال آن را به داخل ناقل بهینه نمود. علاوه بر این، نتایج تجزیه و تحلیل ساختار پروتئین CsUGT زمینه را برای مطالعات عملکردی آتی فراهم می‌کند و می‌تواند اطلاعات با ارزشی در رابطه با رفتار و واکنش این آنزیم‌ در مسیر سنتز آپوکاروتنوئیدهای زعفران فراهم کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

cloning and bioinformatic analysis of UGT gene in saffron (Crocus sativus L.) of Iran

نویسندگان [English]

  • Mohammad Javad Habibzadeh 1
  • Seyed Mahdi Ziaratnia 2
  • Ebrahim Dorani-Uliaie 3

1 Graduated with a PhD in Agricultural Biotechnology, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz,Tabriz, Iran

2 Assistant Professor, Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran

3 Assistant Professor, Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran

چکیده [English]

Saffron is the most expensive spice in the world. The economic value of saffron is due to the existence of apocarotenoids in its stigma. Therefore, the isolation and characterization of genes involving in apocarotenoids metabolism is on particular importance. In this research, beacause the importance of CsUGT gene in crocin biosynthesis, it was isolated, cloned the E.coli strain DH5α. The full length gene was sequenced and registered in the NCBI. In order to characterize CsUGT gene, first the protein sequence was obtained, and then the physical and chemical characteristics and physiology of the CsUGT protein were analyzed by Protparam, SOPMA, ProtScale, Pfam, ProtComp, SignalP, TMHMM and ChloroP servers and tools. Also, using the Swiss-Model server, the 3D structure of this protein was investigated and Ramachandran diagram was drawn to validate the 3D drawn model structure. According to the results, CsUGT protein with 462 amino acids has the conserved sequence of glycosyltransferase family proteins and was identified as a polar protein, stable at high temperatures and without hydrophobic domain. CsUGT protein has no peptide signal or binding signals and has a cytoplasmic location. This research made it possible to isolate the CsGTS gene of saffron and optimized the conditions of its transfer into a vector. In addition, the results of CsUGT protein structure analysis provide the basis for future functional studies and can also provide valuable information regarding the behavior and reaction of this enzyme in the synthesis of saffron apocarotenoids. In addition, these results can be useful in the future programs of Iranian saffron genetic modification.

کلیدواژه‌ها [English]

  • apocarotenoid
  • crocin
  • phylogenetic analysis
  • modeling
Ahmad baba, Sh., Jain, D., Abbas, N., & Ashraf, N. (2015). Overexpression of Crocus Carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance dehydration, salt and oxidative stresses by modulating ROS machinery. Journal of Plant Physiology, 189, 114- 125. https://doi.org/10.1016/j.jplph.2015.11.001.
Ahrazem, O., Rubio-Moraga, A., Jimeno, M.L., & Gomez-Gomez, L. (2015). Structural characterization of highly glucosylation crocins and regulation of the biosynthesis during flower development in crosus. Frontiers in Plant Science, 6, 1-14.  https://doi.org/10.3389/fpls.2015.00971.
Almagro Armenteros, J.J., Tsirigos, K.D., Sønderby, C.K., Petersen, T.N., Winther, O., Brunak, S., von Heijne, G., & Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37(4), 420-423. https://doi.org/10.1038/s41587-019-0036-z.
Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannindis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Xenarios, I., & Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40(W1), W597-W603.
 Bathaie, S.Z., Ashrafi, M., Bolhasani, A., Etemadi-kia, B., & Moosavi-movahedi, A.A. (2006). Purification of carotenoid and monoterpene aldehydes from Iranian saffron and investigation of their effect on the structure of DNA. Histone H1 and H1-DNA Complex. Iranian Journal of Medicinal and Aromatic Plants, 22(2), 85-97. (In Persian with English Summary).
Beiki, A., Keify, F., & Mozafari, J. (2011). Rapid genomic DNA isolation from corm of Crocus species for genetic diversity analysis. Journal of Medicinal Plants Research, 5, 4596-4600.
Bertoni, M.,  Kiefer, F., Biasini, M., Bordoli, L., & Schwede, T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports, 7(1), 10480. https://doi.org/10.1038/s41598-017-09654-8.
Bienert, S., Waterhouse, A., de Beer, T.A.P., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS-MODEL Repository - new features and functionality. Nucleic Acids Research, 45, D313-D319. https://doi.org/10.1093/nar/gkw1132.
Bouvier, F., Suire, C., Mutterer, J., & Camara, B. (2003). Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell, 15(1), 47-62. https://doi.org/10.1105/tpc.006536.
Brown, T.A. (2016). Gene Cloning and DNA Analysis: an Introduction. 7th ed, Wiley Blackwell.
Combet, C., Blanchet, C., Geourjon, C., & Deleage, G. (2000). NPS@: Network Protein Sequence Analysis. Trends in Biochemical Science, 25(3), 147-150.  https://doi.org/10.1016/S0968-0004 (99)01540-6.
Cote, F., Cormier, F., Dufresen, C., & Willemot, C. (2000). Properties of a glucosyltransferase involved in Crocin synthesis. Plant Science, 153, 55-63. https://doi.org/10.1016/S0168-9452(99)00248-4.
Cote, F., Cormier, F., Dufresen, C., & Willemot, C. (2001). A highly specific glucosyltransferase is involved in the synthesis of crocetin glucosylesters in Crocus sativus cells. Journal of plant physiology, 158, 553- 560. https://doi.org/10.1016/S0168-9452(99)00248-4.
Cunningham, FX., & Gantt, E. (1998). Genes and enzymes of carotenoid biosynthesis in plants. Annual Review of Plant Physiology and Molecular Biology, 49, 557-583. https://doi.org/10.1146/annurev.arplant.49.1.557.
Demurtas, O.S., Frusciante, S., Ferrante, P., Diretto, G., Hosseinpour Azad, N., Pietrella, M., e Aprea, G., Taddei, A.R., Romano, E., Mi, J., Al-Babili, S., Frigerio, L., & Giuliano, G. (2018). Candidate enzymes for saffron crocin biosynthesis are localized in multiple cellular compartments. Plant Physiology, 177(3), 990-1006. https://doi.org/10.1104/pp.17.01815.
Dong, T., & Hwang, I. (2014). Contribution of ABA UDP-glucosyltransferases in coordination of ABA biosynthesis and catabolism for ABA homeostasis. Plant Signal and Behavior, 9, e28888. https://doi.org/10.4161/psb.28888.
Dufresene, C., Cormier, F., & Dorion, S. (1997). In vitro formation of crocetin glucoyl esters by Crocus sativus callus extract. Planta Medica, 63(2), 150-153. https://doi.org/10.1055/s-2006-957633.
El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi, M., Richardson, L.J., Salazar, J.A., Smart, A., Sonnhammer, E.L.L., Hirsh, L.,  Paladin, L., Piovesan, D., Tosatto, S.C.E., & Finn, R.D. (2019). The Pfam protein families database in 2019. Nucleic Acids Research, 48(D1), D427- D432. https://doi.org/10.1093/nar/gky995.
Frusciante, S., Diretto, G., Bruno, M., Ferrante, P., Pietrella, M., Prado-cabrero, A., Rubio-Morega, A., Beyer, P., Gomez-Gomez, L., Al-Babili, S., & Giuliano, G. (2014). Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proceeding of the National Academy Sciences of the USA, 111(33), 12246- 12251.  https://doi.org/10.1073/pnas.1404629111.
Gasteiger, E., Hoogland, Ch., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., & Bairoch, A. (2005). Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook. Humana Press, New York, 571-607. https://doi.org/ 10.1385/1-59259-584-7:531.
Gomez-Gomez, L., Parra-Vega, V., Rivas-sendra, A., Segui-Simmaro, J. M., Molina, R.V., Pallotti, C., Rubio-Moraga, A., Diretto, G., Prieto, A., & Ahrazem, O. (2017). Unraveling massive crocins transport and accumulation through proteome and microscopy tools during the development of saffron stigma. International Journal of Molecular Sciences, 18(1), E76.  https://doi.org/10.3390/ijms18010076.
Hosseinpour Azad, N., Nematzadeh, G.A., Giuliano, G., Ranjbar, G.A., & Yamchi, A. (2017). Identification of Apo- Carotenoids' crocin and crocetin isomers in saffron crude extracts by HPLC coupled to atmospheric pressure chemical ionization and high resolution orbitrap mass spectrometry. Saffron Agronomy and Technology 4(4): 291-300. https://doi.org/10.22048/jsat.2016.38670.
Hosseinpour Azad, N. (2020). Identification and recombinant expression of crocin synthesis isoform gene in saffron stigma. Saffron Agronomy and Technology, 7(4): 481-490. (In Persian with English Summary). https://doi.org/10.22048/jsat.2019.133922.1302.
Hughes, J., & Hughes, M.A. (1994). Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA Sequencing and Mapping, 5(1), 41–49. https://doi.org/10.3109/10425179409039703.
Jones, PR., Moller, BL., & Hoj, PB. (1999). The UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase that catalyses the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. Journal of Biological Chemistry, 274(50), 35483–35491. https://doi.org/10.1074/jbc.274.50.35483.
Kite, J., & Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–32. https://doi.org/10.1016/0022-2836(82)90515-0.
Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, EL. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 305(3): 567-580. https://doi.org/10.1006/jmbi.2000.4315.
Kumar, R., Sangwan, R.S., Mishra, S., Sabir, F., & Sangwan, N.S. (2012). In silico motif diversity analysis of the glycon preferentiality of plant secondary metabolic glycosyltransferases. Plant Omics, 5(3), 200-210.
Lee, H-I., & Raskin, I. (1999). Purification, cloning, and expression of a pathogen inducible UDP-glucose: salicylic acid glucosyltransferase from tobacco. Journal of Biological Chemistry, 274(51), 36637–36642. https://doi.org/10.1074/jbc.274.51.36637.
Lim, E-K., Baldauf, S., Li, Y., Elias, L., Worrall, D., Spencer, SP., Jackson, RG., Taguchi, G., Ross, J., & Bowles, DJ. 2003. Evolution of substrate recognition across a multigene family of glycosyltransferases in Arabidopsis. Glycobiology, 13(3), 139–145. https://doi.org/10.1093/glycob/cwg017.
Lomize, A.L., Pogozheva, I.D., Lomize, M.A., & Mosberg, H.I. (2007). The role of hydrophobic interactions in positioning of peripheral proteins in membranes. BMC Structural Biology, 7, 44. https://doi.org/10.1186/1472-6807-7-44.
Mai, N., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A., & Mizukami, H. (2012). UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin in Gardenia jasminoides. FEBS Letters, 586(7), 1055. https://doi.org/10.1016/j.febslet.2012.03.003.
Maniatis, T., Fritsch, E., & Sambrook, F. (1995). Molecular cloning. A laboratory Manual. Cold Spring Harbor Laboratory, New York.
Moraga, A.R., Nohales, P.F, Perez, J.A., & Gomez-Gomez, L. (2004). Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta, 219, 955–66. https://doi.org/10.1007/s00425-004-1299-1.
Mozos, A.T. (2013). Isolation and characterization of enzymes involved in the biosynthesis of secondary metabolites with phytotherapeutic interest. PhD Thesis. Departamento de Ciencia y Tecnología Agroforestal y Genética, University of Castilla-La Mancha Facultad de Farmacia, Spain.
Mirhoseini, S.Z., Pezeshkian, Z., & Ghovvati, Sh. (2016). Phylogenetic and in silico analysis of interferon Beta-1b Protein. Journal of Mazandaran University of Medical Science, 26(145), 70-82. (In Persian with English Summary).
Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A., & Mizukami, H. (2012). UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin in Gardenia jasminoides. FEBS Lett, 586(7), 1055–1061. https://doi.org/10.1016/j.febslet.2012.03.003.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., & Ferrin, T.E. (2004). UCSF Chimera-avisualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605-1612. https://doi.org/10.1002/jcc.20084.
Rubio, A., Rambla, J.L., Santaella, M., Gomez, D., Orzaez, D., Granell, A., & Gomez-Gpmez, L. (2008). Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in β-Ionone release. The Journal of Biological Chemistry, 283(36), 24816 –24825. https://doi.org/10.1074/jbc.M804000200.
Rubio Moraga, A., Nohales, P.F., Peres, J.A., & Gomez-Gomea, L. (2004). Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta, 219, 955- 966.  https://doi.org/10.1007/s00425-004-1299-1.
Rubio Moraga, A., Rambla, J.L., Ahrazem, O., Granell, A., & Gomea-Gomez, L. (2009). Metabolite and target transcript analyses during Crocus sativus stigma development. Phytochemistry, 70, 1009- 1016. https://doi.org/10.1016/j.phytochem.2009.04.022.
Rubio-Moraga, A., Rambla, J.L., Fernández-de-Carmen, A., Trapero-Mozos, A., Ahrazem, O., Orzáez, D., Granell, A., & Gómez-Gómez, L. (2014). New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Plant Molecular Biology, 86(4-5), 555-569. https://doi.org/10.1016/j.phytochem.2009.04.022.
Shao, H., He, X., Achnine, L., Blount, J.W., Dixon, R.A., & Wang, X. (2005). Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell, 17, 3141–3154. https://doi.org/10.1105/tpc.105.035055.
Trapero, A., Ahrazem, O., Rubio-Moraga, A., Jimeno, M.L., Gomez, M.D., & Gomez-Gomez, L. (2012). Characterization of glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus. Plant Physiology, 159(4), 1335- 1354. https://doi.org/10.1104/pp.112.198069.
Vogt, T., & Jones, P. (2000). Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends in Plant Science, 5(9), 380-386. https://doi.org/10.1016/S1360-1385(00)01720-9.
Wang, W., He, P., Zhao, D., Ye, L., & Dai, L. (2019). Construction of Escherichia coli cell factories for crocin biosynthesis. Microbial Cell Factories, 18:120. https://doi.org/10.1186/s12934-019-1166-1.
Wetterhorn, K.M., Newmister, S.A., Caniza, R.K., Busman, M., McCormick, S., Berthiller, F., Adam, G., & Rayment, I. (2016). Crystal structure of OS79 (Oso4go2oo66oo) from Oryza sativa: a UDP-glucosyltransferase involved in the detoxification of deoxynivalenol. Biochemistry, 55(44), 6175- 6186.  https://doi.org/10.2210/pdb6BK3/pdb.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modeling of protein structures and complexes. Nucleic Acids Research, 46(W1): W296-W303. https://doi.org/10.1093/nar/gky427.
Xi, L., & Qian, Z. (2006). Pharmacological properties of crocetin and crocin (digentiobiosyl ester of crocetin) from saffron. Natural Product Communications, 1(1), 65-75. 
Yousefi Javan, I., & Gharari, F. (2017). The structure of the protein and gene expression of PIC2 affecting blooming flowers (Crocus sativus L.). Saffron Agronomy and Technology, 5(1), 73-90. (In Persian with English Summary).
https://doi.org/10.22048/jsat.2017.63141.1200.