تأثیر آرایش‌های کشت مخلوط با پنیرک بر عملکرد پیازهای دختری و گل و خصوصیات کیفی زعفران در سال سوم

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشیار گروه اگروتکنولوژی دانشکده کشاورزی دانشگاه فردوسی مشهد

2 دانشجوی دکتری بوم شناسی زراعی گروه اگروتکنولوژی دانشکده کشاورزی دانشگاه فردوسی مشهد

10.22048/jsat.2020.210799.1371

چکیده

مزرعه زعفران، طی شروع دوره رکود تا گلدهی بدون رشد است و افزایش درجه حرارت خاک و کاهش کارایی استفاده از زمین از جمله مشکلات اصلی تک­کشتی این گیاه محسوب می­شوند. به منظور بررسی تأثیر انواع آرایش­های کشت مخلوط گیاه دارویی چندساله پنیرک (Malva sylvetris L.) با زعفران (Crocus sativus L.)بر رشد پیاز­ و عملکرد گل به منظور تخفیف اثر تغییر اقلیم و گرمایش جهانی، آزمایشی در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه فردوسی مشهد، در سه سال زراعی 95-1394 و 96-1395 و 97-1396 به اجرا درآمد. تیمارها شامل فاصله ردیف 15، 30، 45 و 60 سانتی‌متر زعفران از پنیرک و کشت خالص پنیرک و زعفران بودند. نتایج سال سوم نشان داد که اثر آرایش­های کشت مخلوط با پنیرک بر شاخص­های عملکرد گل و پیاز زعفران معنی­دار بود. مقایسه بین تیمارهای خالص با مخلوط نشان داد که بیشترین تعداد گل، عملکرد کلاله خشک و عملکرد پیازهای دختری در کشت خالص به ترتیب برابر با 81 گل در متر مربع، 2115/0 گرم بر متر مربع و 51/26 گرم بر مترمربع مشاهده شد. در بین تیمارهای کشت مخلوط نیز بیشترین مقدار برای فاصله ردیف 30 سانتی­متر به ترتیب با 46 گل در متر مربع، 155/0 گرم بر متر مربع و 39/13 گرم بر متر مربع بدست آمد. محتوی کروسین، پیکروکروسین و سافرانال تحت تأثیر معنی­دار کشت مخلوط با پنیرک قرار نگرفت. اثر کشت مخلوط با زعفران بر وزن‌ گل تر، وزن خشک گل و تعداد شاخه جانبی پنیرک معنی­دار بود. بیشترین وزن خشک گل پنیرک برای فاصله ردیف 60 سانتی­متر با 89/28 گرم بر متر مربع مشاهده شد. دامنه نسبت برابری زمین 77/1-01/1 محاسبه شد که بالاترین میزان برای فاصله ردیف 15 سانتی‌متری پنیرک از زعفران بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of intercropping patterns with mallow on replacement corms and flower yield and qualitative criteria of saffron in the third year

نویسندگان [English]

  • Surur Khorramdel 1
  • F. Moallem Banhangi 2
  • S.J. Davarpanah 2
1 Associate Professor, Department of Agrotechnology, College of Agriculture, Ferdowsi University of Mashhad
2 PhD Student in Agroecology, Department of Agrotechnology, College of Agriculture, Ferdowsi University of Mashhad
چکیده [English]

Saffron field from the onset of dormancy to flowering phase is free of vegetation and increased soil temperature and reduced land use efficiency are the clearest problems of sole saffron cultivation. In order to study the effect of intercropping patterns of mallow (Malva sylvetris L.) as a perennial medicinal plant with saffron (Crocus sativus L.) on replacement corm growth and flower yield affected as possible cooling of corms for climate change and global warming mitigation, an experiment was conducted at Faculty of Agriculture, Ferdowsi University of Mashhad, Iran during three growing seasons of 2015-2016, 2016-2017 and 2017-2018. Treatments were 15, 30, 45 and 60-cm row spacings for saffron from mallow planting rows and sole saffron and mallow cultivations. Based on results in the third year, the effect of intercropping patterns with mallow was significant on yield indicators of flower and corm of saffron. In comparison between sole cultivation and intercropped saffron revealed that the highest values for flower number, dried stigma yield and yield of replacement corms were recorded for sole saffron cultivation with 81 flowers.m-2, 0.2115 g.m-2 and 26.51 g.m-2, respectively. In comparisons amongst intercropping patterns, the highest values for these criteria were related to 30-cm row spacings from mallow with 46 flowers.m-2, 0.155 g.m-2 and 13.39 g.m-2, respectively. However, corcin, picrocrocin and safranal contents were not significantly affected by intercropping patterns with mallow. Effect of intercropped saffron was significant on fresh weight of flower, dried weight of flower and branches number per plant of mallow. The maximum value for dried flower weight was observed for 60-cm row spacing with 28.89 g.m-2. The range for LER calculated with 1.01-1.77 and the maximum value was for 15-cm row spacing.

کلیدواژه‌ها [English]

  • Crocin content
  • Stigma yield
  • Land Equivalent Ratio
Aghhavani Shajari, M., Rezvani Moghaddam, P., Ghorbani, R., and Koocheki, A. 2017. Effects of cover crops on weeds population, agronomic characteristics, flower and corm yield of saffron (Crocus sativus L.). Saffron Agronomy and Technology 5 (1): 3-19. (In Persian with English Summary).
Alipoor Miandehi, Z., Mahmodi, S., Behdani, M.A., and Sayyari, M.H. 2014. Effect of manure, bio-and chemical fertilizers and corm size on saffron (Crocus sativus L.) yield and yield components. Journal of Saffron Research 1 (2): 73-84. (In Persian with English Summary).
Asadi, G.A., Khorramdel, S., and HatefiFarajian, M.H. 2016. The effects of row intercropping ratios of chickpea and saffron on their quantitative characteristics and yield. Saffron Agronomy and Technology 4: 93-103. (In Persian with English Summary).
Asgarpour, R., Khajeh-Hosseini, M., and Khorramdel, S. 2015. Effect of aqueous extract concentrations of saffron organs on germination characteristics and preliminary growth of three weed species. Journal of Saffron Research 3 (1): 81-96. (In Persian with English Summary).
Azizi-Zohan, A., Kamgar-Haghighi, A.A., and Sepaskhah, A.R. 2008. Crop and pan coefficients for saffron in a semi-arid region of Iran. Journal of Arid Environment 72 (3): 270-278.
Barkhi, A., Rashed-Mohassel, M.H., Nassiri Mahallati, M., Hosseini, S.M., and Moazzen, S. 2009. Effect of planting pattern and plant density on growth, yield and yield components of maize (Zea mays L.) in competition with redroot pigweed (Amaranthus retrofelexus). Iranian Journal of Crop Science 11 (1): 67-81. (In Persian with English Summary).
Benschop, M. 1993. Crocus. In: The Physiology of Flower Bulbs. Hertogh, A., de. Nard, M., Leed. (Eds.) Amsterdam, Elsevier, (Chapter 19). pp. 257–283.
Bouzarjmehri, K., Shikh Ahmadi, F., and Javani, K. 2016. Investigation financial impacts of cultivating saffron on rural families with an emphasis on sustainable agriculture (Case study: Balavelayat Rural District, City of Bakharz). Saffron Agronomy and Technology (4): 63-73. (In Persian with English Summary).
Chen, G., Kong, X., Gan, Y., Zhang, R., Feng, F., Yu, A., Zhao, C., Wan,  S., and Chai, Q. 2018. Enhancing the systems productivity and water use efficiency through coordinated soil water sharing and compensation in strip-intercropping. Scientific Reports 8: e10494.
Christodoulou, E., Kadoglou, N.P.E., Kostomitsopoulos, N., and Valsami, G. 2015. Saffron: a natural product with potential pharmaceutical applications. Journal of Pharmacology 67: 1634-1649.
Ebrahimian, E., Koocheki, A., Nassiri Mahallati, M., Khorramdel, S., and Beheshti, A. 2016. The effect of tillage and wheat residue management on nitrogen uptake efficiency and nitrogen harvest index in wheat. Turkish Journal of Field Crops (21): 233-239.
Eghbali, S., Rashed Mohassel, M.H., Nassiri Mahallati, M., and Kazerooni Monfared, E. 2008. Allelopathic potential of shoot and corm of saffron residues on wheat, rye, vetch and bean. Iranian Journal of Field Crops Research 6: 227-234. (In Persian with English Summary).
Esmaelnejad, M. 2017. Assessment and mapping of heat stress affecting the saffron in South Khorasan province. Journal of Saffron Research 4 (2): 159-171. (In Persian with English Summary).
Fallahi, H.R., Alami, S., Behdani, M.A., and Aghhavani Shajari, M. 2015. Evaluation of local and scientific knowledge in saffron agronomy (Case study: Sarayan). Journal of Saffron Research 3 (1): 31-50. (In Persian with English Summary).
Farooq, S., and Koul, K. 1983. Changes in gibberellins-like activity in corms of saffron plant (Crocus sativus L.) during dormancy and sprouting. Journal of Plant Biochemistry 178: 685-691.
Galavi, M., Mousavi, S.R., and Ziyaie, M. 2009. Effects of planting depth and control of soil summer temperature on tunic production, corm propagation and leaf desiccation in end of growth period of saffron (Crocus sativus L.). Asian Journal of Plant Science 8: 375-379.
Gliessman, S.R. 1998. Agroecology: Ecological Process in Sustainable Agriculture. Ann Arbor Press Michigan. 252 p.
Himmelstein, J., Ares, A., Gallagher, D., and Myers, J. 2017. A meta-analysis of intercropping in Africa: impacts on crop yield, farmer income, and integrated pest management effects. International Journal of Agricultural Sustainability 15: 1-10.
Jahan, M., Amiri, M.B., Aghhavani Shajari, M., and Tahami, M.K. 2013. Quantity and quality of (Cucurbita pepo L.) as affected by winter cover crops (Lathyrus sativus and Trifolium resopinatum), PGPRs and organic manures. Iranian Journal of Field Crops Research 11 (2): 337-356. (In Persian with English Summary).
Kafi, M., Rashed Mohassel, M.H., Koocheki, A., and Mollafilabi, A. 2002. Saffron, Production and Processing. Zaban va Adab Publications, Iran, 276 p. (In Persian).
Khanali, M., Movahedi, M., Yousefi, M., Jahangiri, S., and Khoshnevisan, B. 2016. Investigating energy balance and carbon footprint in saffron cultivation a case study in Iran. Journal of Cleaner Production 115: 162-171.
Khorramdel, S., Rezvani Moghaddam, P., and Amin Ghafori, A. 2018. Economic evaluation of agroecosystem services of saffron in the Khorasan Razavi province. Saffron Agronomy and Technology 6 (1): 73-89. (In Persian with English Summary).
Khorramdel, S., Rezvani Moghaddam, P., Asadi, G.A., and Mirshekari, A. 2016. Effect of additive intercropping series of cumin (Cuminum cyminum L.) with saffron (Crocus sativus L.) on their yield and yield components. Journal of Saffron Research 4: 53-71. (In Persian with English Summary).
Khosravi, M. 2005. Intercropping black zira (Bunium persicum) with saffron and annual crops: Agroecological and economic perspectives. PhD Desertation, College of Agriculture, Ferdowsi University, Iran. (In Persian with English Summary).
Koocheki, A. 2004. Indigenous knowledge in agriculture with particular reference production in Iran. Acta Horticulture (650): 175-182.
Koocheki, A., and Seyyedi, S.M. 2015. Relationship between nitrogen and phosphorus use efficiency in saffron (Crocus sativus L.) as affected by mother corm size and fertilization. Industrial Crops and Products 71: 128-137.
Koocheki, A., and Seyyedi, S.M. 2016a. Effects of corm size, organic fertilizers, Fe-EDTA and Zn-EDTA foliar application on nitrogen and phosphorus uptake of saffron (Crocus sativus L.) in a calcareous soil under greenhouse conditions. Notulae Scientia Biologicae 8 (4): 461-467.
Koocheki, A., and Seyyedi, S.M. 2016b. Effects of different water supply and corm planting density on crocin, picrocrocin and safranal, nitrogen uptake and water use efficiency of saffron grown in semi-arid region. Notulae Scientia Biologicae 8: 334-341.
Koocheki, A., Nassiri, M., Alizadeh, A., and Ganjeali, A. 2009. Modelling the impact of climate change on flowering behaviour of Saffron (Crocus sativus L.). Iranian Journal of Field Crops Research 7 (2): 583-594. (In Persian with English Summary).
Koocheki, A., Nassiri, M., and Behdani, M.A. 2006. Agronomic attributes of saffron yield at agroecosystems scale in Iran. Proceedings of the 2nd International Symposium on Saffron Biology and Technology. Mashhad, Iran, 28-30 October 2006. pp. 33-40.
Koocheki, A., Rezvani Moghaddam, P., and Seyyedi, S.M. 2019. Saffron-pumpkin/watermelon: A clean and sustainable strategy for increasing economic land equivalent ratio under limited irrigation. Journal of Cleaner Production (208): 1327-1338.
Koocheki, A., Rezvani Moghaddam, P., Fallahi, H.R., and Aghhavani Shajari, M. 2016a. The study of saffron (Crocus sativus L.) replacement corms growth in response to planting date, irrigation management and companion crops. Saffron Agronomy and Technology 4 (1): 3-18. (In Persian with English Summary).
Koocheki, A., Seyyedi, S.M., and Gharaei, S. 2016b. Evaluation of the effects of saffron–cumin intercropping on growth, quality and land equivalent ratio under semi-arid conditions. Scientia Horticulturae 201: 190–198.
Molina, R.V., Valero, M., Navaro, Y., Garcia Luis, A., and Guardiola, J.L. 2004.Temperature effects on flower formation in saffron (Crocus sativus L.). Scientia Horticulturae 103: 361-379.
Molina, R.V., Valero1, M., Navarrol, Y., Guardiola, J.L., and García-Luis, A. 2005. Temperature effects on flower formation in saffron (Crocus sativus L.). Scientia Horticulturae 103: 361-379.
Murungu, F.S., Chiduza, C., Muchaonyerwa, P., and Mnkeni, P.N.S. 2011. Mulch effects on soil moisture and nitrogen, weed growth and irrigated maize productivity in a warm-temperate climate of South Africa. Soil and Tillage Research 112: 58-65.
Naderi Darbaghshahi, M., Jalalizand, A., and Javanmard, H. 2013. Assessment the quantitative traits of saffron in intercropping of saffron and chamomail. The Journal of Novel Applied Sciences 2: 238-242. (In Persian with English Summary).
Nasabian, S., and Jafari, S. 2016. Effect of saffron export on agricultural growth: Case study of Iran and Spain. The Journal of Agricultural Economics Research 8: 17-36.
Onnabi Milani, A. 2002. Evaluation of the effect of irrigation regimes on yield component and water use efficiency of wheat in a saline soil. Journal of Water and Soil Science 16 (1): 121-135. (In Persian with English Summary).
Renau-Morata, B., Nebauer, S.G., Sánchez, M., and Molina, R.V. 2012. Effect of corm size, water stress and cultivation conditions on photosynthesis and biomass partitioning during the vegetative growth of saffron (Crocus sativus L.). Industrial Crops and Products 39: 40-46.
Rezvani Moghaddam, P., Khorramdel, S., and Mollafilabi, A. 2015. Evaluation of soil physical and chemical characteristics impacts on morphological criteria and yield of saffron (Crocus sativus L.). Journal of Saffron Research 3 (2): 188-203. (In Persian with English Summary).
Rezvani Moghaddam, P., Koocheki, A., Molafilabi, A., and Seyyedi, M. 2013. The effects of different levels of applied wheat straw in different dates on saffron (Crocus sativus L.) daughter corms and flower initiation criteria in the second year. Saffron Agronomy and Technology 1: 55-70. (In Persian with English Summary).
Sepaskhah, A.R., and Kamgar-Haghighi, A.A. 2009. Saffron irrigation regime. International Journal of Plant Production 3: 1-16.
Shahabzadeh, Z., Heidari, B., and Dadkhodaie, A. 2013. Regenerating salt tolerant saffron (Crocus sativus) using tissue culture with increased pharmaceutical ingredients. Journal of Crop Science and Biotechnology 16: 209-217
Wang, Z. G., Jin, X., Bao, X.G., Li, X.F., Zhao, J.H., Sun, J.H., Christie, P., and Li, L. 2014. Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping. PLOS OnE 9 (12): e113984.
Yadav, G.S., Das, A., Lal, R., Babu, S., Meena, R.S., Saha, P., Singh, R., and Datta, M. 2018. Energy budget and carbon footprint in a no-till and mulch based rice mustard cropping system. Journal of Cleaner Production (191): 144-157.
Yin,  W., Chai, Q., Guo, Y., Fan,  Z., Hu, F., Fan, H., Zhao, C., Yu, A., and Coulter, J.A. 2020. Straw and plastic management regulate air-soil temperature amplitude and wetting-drying alternation in soil to promote intercrop productivity in arid regions. Field Crops Research 249: 107758.
Yin, W., Chai, Q., Guo, Y., Feng, F., Zhao, C., Yu, A., Liu, C., Fan, Z., Hu, F., and Chen, G. 2017. Reducing carbon emissions and enhancing crop productivity through strip intercropping with improved agricultural practices in an arid area. Journal of Cleaner Production 166: 197-208.