بررسی ارزش تغذیه‌ای و امکان سیلو پذیری ضایعات (گلبرگ و پرچم) زعفران

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار گروه علوم دامی، مجتمع آموزش عالی تربت‌جام، تربت‌جام، ایران

2 استادیار گروه علوم دامی، مجتمع آموزش عالی سراوان، سراوان، ایران

3 کارشناس آزمایشگاه مرکزی، مجتمع آموزش عالی تربت‌جام، تربت‌جام، ایران

10.22048/jsat.2020.205812.1361

چکیده

این مطالعه با هدف تعیین ترکیب شیمیایی، خصوصیات سیلویی، قابلیت هضم و فراسنجه‌های تولید گاز برون‌تنی ضایعات زعفران (شامل گلبرگ و پرچم) قبل و بعد از سیلو شدن انجام شد. تیمارهای آزمایشی (با 4 تکرار) شامل 1) ضایعات زعفران قبل از سیلو شدن، 2) سیلاژ ضایعات زعفران بدون افزودنی، 3) سیلاژ حاوی 88/96 درصد ضایعات زعفران+12/3 درصد سبوس گندم (وزن­تر)، 4) سیلاژ حاوی 75/93 درصد ضایعات زعفران+25/6 درصد سبوس گندم (وزن­تر)، 5) سیلاژ حاوی 5/87 درصد ضایعات زعفران +5/12 درصد سبوس گندم (وزن تر)، 6) سیلاژ حاوی 75 درصد ضایعات زعفران +25 درصد سبوس گندم (وزن­تر)، و 7) سیلاژ حاوی 50 درصد ضایعات زعفران+50 درصد سبوس گندم (وزن تر) بود. تجزیه‌ی آماری داده‌ها در قالب طرح کاملاً تصادفی انجام شد. تیمار 2 به‌دلیل کپک‌زدگی و چسبندگی زیاد، از کیفیت ظاهری و بوی مناسبی برخوردار نبود، ولی افزودن سبوس گندم بویژه در سطوح بالاتر (تیمارهای 4، 5 و 6) منجر به افزایش کیفیت سیلاژ ضایعات زعفران شد. ترکیب شیمیایی تیمارهای آزمایشی (ماده خشک 37/54-40/10 درصد وزن تازه، الیاف نامحلول در شوینده‌ی خنثی 35/27-83/12 درصد، الیاف نامحلول در شوینده‌ی اسیدی 45/11-23/7 درصد، پروتئین خام 67/15-88/14 درصد، چربی خام 77/5-43/5 درصد و خاکستر 12/11-89/5 درصد وزن خشک) متفاوت بود. در بین تیمارهای آزمایشی، بیشترین مقدار الیاف نامحلول در شوینده‌ی خنثی و اسیدی (به‌ترتیب 35/27 و 45/11 درصد) در تیمار 7 مشاهده شد. کمترین مقدار pH و بیشترین غلظت اسید لاکتیک، اسید استیک، حجم گاز تولید شده در زمان‌های 12 و 24 ساعت و ثابت نرخ تولید گاز در تیمار 7 مشاهده شد. قابلیت هضم حقیقی ماده خشک از 30/76 درصد برای تیمار 2 تا 95/79 درصد برای تیمار 1 متغیر بود. در مجموع، ضایعات زعفران پیش از سیلو شدن از ارزش تغذیه‌ای مناسبی برخوردار بود، و سیلو کردن بدون افزودنی موجب کاهش کیفیت آن شد. به هر حال، سیلو کردن این ضایعات مخلوط با سبوس گندم به‌عنوان یک ماده‌ی جاذب رطوبت امکان‌پذیر بود بدون آن‌که تأثیر منفی بر برخی پارامترهای تغذیه‌ای داشته باشد. از لحاظ کیفیت ظاهری، بو، عدم کپک‌زدگی و خصوصیات تخمیری محیط سیلو، بهترین شرایط در تیمار 7 مشاهده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation the nutritional value and ensiling ability of saffron wastes (petals and stamen)

نویسندگان [English]

  • Mohsen Kazemi 1
  • Hasan Saleh 2
  • Behzad Fahmideh 3
1 Assistant professor, Department of Animal Science, Higher Education Complex of Torbat-e Jam, Torbat-e Jam, Iran
2 Assistant professor, Department of Animal Science, Higher Education Complex of Saravan, Saravan, Iran
3 Lab Expert in Central Laboratory, Higher Education Complex of Torbat-e Jam, Torbat-e Jam, Iran
چکیده [English]

This study aimed to determine the chemical composition, silage characteristics, digestibility, and in vitro gas production parameters of saffron waste (including petals and stamen) before and after ensiling. Experimental treatments (4 replicates) contained: 1) Saffron wastes before ensiling: SWBE; 2) Saffron wastes after ensiling: SWAE; 3) 96.88% Saffron wastes after ensiling+3.12% wheat bran: 96.88%SWAE+3.12%WB (fresh weight); 4) 93.75% Saffron wastes after ensiling+6.25% wheat bran: 93.75%SWAE+6.25%WB (fresh weight); 5) 87.5% Saffron wastes after ensiling+12.5% wheat bran: 87.5%SWAE+12.5%WB (fresh weight); 6) 75% Saffron wastes after ensiling+25% wheat bran: 75%SWAE+25%WB (fresh weight); 7) 50% Saffron wastes after ensiling+50% wheat bran: 50%SWAE+50%WB (fresh weight). Statistical analysis of the data was performed in a completely randomized design. Treatment 2 did not have good quality and odor due to high moldy and adhesion characteristics, but the addition of wheat bran, especially at higher levels (treatment 4, 5, 6) led to an increase in the silage quality. Chemical composition of the experimental treatments (dry matter 10.40-54.37% of fresh weight, neutral detergent fiber 12.83-27.35%, acid detergent fiber 7.23.11.45%, crude protein 14.88-15.67%, ether extract 5.43-5.77% and ash was 5.89-11.12% of dry weight) was different. Among the experimental treatments, the highest neutral and acid detergent fibers were observed (27.35% and 11.45%, respectively) in treatment 7. The lowest pH as well as the highest concentrations of lactic and acetic acids, gas production at 12 and 24 h incubation, and constant rate of gas production were observed in treatment 7. True dry matter digestibility differed from 76.30% for treatment 2 to 79.95% for treatment 1. Overall, saffron waste had good nutritional value before being ensilaged, and ensiling without additives reduced its quality. However, it was possible to ensilage saffron wastes with wheat bran as a moisture-absorbing material without adverse effects on some nutritional parameters. In terms of appearance quality, odor, non-molding, and fermentation characteristics of the silo environment, the best conditions were observed in treatment 7.

کلیدواژه‌ها [English]

  • Chemical composition
  • In vitro fermentation
  • Petals and stamen of saffron
  • Silage
  • Wheat bran
Agricultural Statistics. 2017. Volume 2. Ministry of Agriculture Jihad, Deputy of Planning and Economic Development, ICT Center. (In Persian).
Alipour, F., Vakili, S.A., Danesh Mesgaran, M., and Ebrahimi, S.H. 2016. Determine the chemical composition and nutritional value of saffron petals using method in sacco. 7th Congress in Animal Science, Tehran University, Iran. 
Ankom Technology. 2006a. Acid detergent fiber in feeds-filter bag technique. Available at  https://www.ankom.com/sites/default/files/document-files/Method_12_ADF_A2000.pdf
Ankom Technology. 2006b. Neutral detergent fiber in feeds-filter bag technique. Available at  https://www.ankom.com/sites/default/files/document-files/Method_6_NDF_A200.pdf
AOAC. 1999. Official methods of analysis. 16th edition, Association of official analytical chemists, Washington, DC, USA.
Bagheripour, E., Rozbehan, Y., and Alipour, D. 2008. Effect of ensiling, air-drying and addition of polyethylene glycol on in vitro gas production of pistachio by-products. Animal Feed Science and Technology 146: 327-336.
Barnett, A.J.G., and Reid, R. 1957. Studies on the production of volatile fatty acids from grass in artificial rumen. 1. Volatile fatty acids production from fresh grasses. The Journal of Agricultural Science (Cambridge) 48: 315-321.
Blümmel, M., Steingaβ, H., and Becker, K. 1997. The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for prediction of voluntary feed intake of roughages. British Journal of Nutrition 77 (6): 911-921.
Bolsen, K.K., Ashbell, G., and Weinberg, Z.G. 1996. Silage fermentation and silage additives: Review. Asian-Australian Journal of Animal Science 9: 483-493. 
Carpintero, C.M., Henderson, A.R., and McDonald, P. 1979. Effect of some pre-treatments on proteolysis during the ensiling of herbage. Grass Forage Science 34: 311-315.  
Charmley, E. 2001. Towards improved silage quality-A review. Canadian Journal of Animal Science 81: 157-168.
Cone, J.W., and Van Gelder, A.H. 1999. Influence of protein fermentation on gas production profiles. Animal Feed Science and Technology 76 (3–4): 251-264.
Dordevic, S., Mandic, V., Stanojevic, D., and Jovanovic-Ljeskovic, N. 2017. Effects of Lactobacillus plantarum inoculants on maize silage quality. Biotechnology in Animal Husbandry 33 (1): 115-125.
Dos Anjos, G.V.S., Gonçalves, L.C., Rodrigues, J.A.S., Keller, K.M., Coelho, M.M., Michel, P.H.F., Ottoni, D., and Jayme, D.G. 2018. Effect of re-ensiling on the quality of sorghum silage. Journal of Dairy Science 101: 1-8.
Eslamian, E., Valizadeh, R., Naserian, A.A., and Vakili, A.R. 2017. Nutritional value of different wheat brans from flour factories of Khorasan Razavi province in summer and winter and the effect of replacing barley grain with summer wheat bran on operation of Saanen goats. Animal Science Researches (Agricultural Science) 27 (3): 33-50. (In Persian with English Summary).
Eyni, B., and Bashtani, M. 2016. Survey of nutritive value and degradability of sorghum silage from first and second cutting of forage. Research on Animal Production 7 (14): 136-142. (In Persian with English Summary).
Fallahi, H.R., and Mahmoodi, S. 2018. Influence of organic and chemical fertilization on growth and flowering of saffron under two irrigation regimes. Saffron Agronomy and Technology 6 (2): 147–166. (In Persian with English Summary).
Getachew, G., Robinson, P.H., DePeters, E.J., and Taylor, S.J. 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal Feed Science and Technology 111 (1-4): 57-71.
Guo, X.S., Ding, W.R., Han, J.G., and Zhou, H. 2008. Characterization of protein fractions and amino acids in ensiled alfalfa treated with different chemical additives. Animal Feed Science and Technology 142: 89-98.
Hemmati Kakhki, A. 2001. Optimization of factors affecting production of edible colors from saffron petals. Journal of Agricultural Science and Technology 15 (2): 13-20. (In Persian with English Summary).
Heshmati, G.A., Baghani, M., and Bazrafshan, O. 2007. Comparison of nutritional values of 11 rangeland species in eastern part of Golestan province. Animal Science Journal (Pajouhesh and Sazandegi) 73: 90-95. (In Persian with English Summary).
Jadouali, S.M., Atifi, H., Bouzoubaa, Z., Majourhat, K., Gharby, S., Achemchem, F., Elmoslih, A., Laknifli, A., and Mamouni, R. 2018. Chemical characterization, antioxidant and antibacterial activity of Moroccan Crocus sativus L petals and leaves. Journal of Materials and Environmental Sciences 9 (1): 113-118.
Jr., L.K., Shaver, R.D., Grant, R.J., and Schmidt, R.J. 2018. Silage review:Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science 101 (5): 4020-4033.
Kalscheur, K.F., Teter, B.B., Piperova, L.S., and Erdman, R.A. 1997. Effect of dietary forage concentration and buffer addition on duodenal flow of trans-C18:1 fatty acids and milk fat production in dairy cows. Journal of Dairy Science 80 (9): 2104-2114.
Kardan Moghadam, V., Fathi nasri, M.H., Valizadeh, R., and Farhangfar, H. 2014. Growth nutritive value of saffron residues harvested at different stages by in situ and in vitro (gas production) methods. Iranian Journal of Animal Science Research 6 (1): 32-44. (In Persian with English Summary). 
Kaveh, H., and salari, A. 2018. Study and comparison of saffron quality produced in major centers of production in Khorasan provinces. Saffron Agronomy and Technology 6 (2): 209-218.
Kazemi, M. 2019. Comparing mineral and chemical compounds, in vitro gas production and fermentation parameters of some range species in Torbat-e Jam, Iran. Journal of Rangeland Science 9 (4): 351-363.
Kazemi, M., and Valizadeh, R. 2019. Nutritive value of some rangeland plants compared to medicago sativa. Journal of Rangeland Science 9 (2):136-150.
Khoshbakht Fahim, N., Fakoor Janati, S.S., and Feizy, J. 2012. Chemical composition of agriproduct saffron (Crocus sativus L.) petals and its considerations as animal feed. GIDA 37 (4): 197-201.
Koc, F., and Coskuntuna, L. 2003. The comparison of the two different methods on the determination of organic acids in silage fodders. Journal of Animal Production 44 (2): 37-47.
Komolong, M.K., Barber, D.G., and McNeill, D.M. 2001. Post-ruminal protein supply and N retention of weaner sheep fed on a basal diet of lucerne hay (Medicago sativa) with increasing levels of quebracho tannins. Animal Feed Science and Technology 92 (1-2): 59-72.
Kordi, M., and Naserian, A.A. 2012. Influence of wheat bran as a silage additive on chemical composition, in situ degradability and in vitro gas production of citrus pulp silage. African Journal of Biotechnology 11 (63): 12669-12674.
Kung, L., Jr., Shaver, R. Grant, R.J., and Schmidt, R.J. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science 101: 4020-4033.
Li, M., Zi, X, Zhou, H., Hou, G., and Cai, Y. 2014. Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitro gas production of king grass silage. Animal Feed Science and Technology 197: 206-212.
Lia, M., Zi, X., Zhou, H., Hou, G., and Cai, Y. 2014. Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitro gas production of king grass silage. Animal Feed Science and Technology 197: 206-212. 
Liu, J.X., Wang, X.Q., and Shi, Z.Q. 2001. Addition of rice straw or/and wheat bran on composition, ruminal degradability and voluntary intake of bamboo shoot shells silage fed to sheep. Animal Feed Science and Technology 91: 129-138.
Madibela, O.R., and Modiakgotla, E. 2004. Chemical composition and in vitro dry matter digestibility of indigenous finger millet (Eleusine coracana) in Botswana. Livestock Research for Rural Development 16 (4).
Makkar, H.P.S. 2010. In vitro screening of feed resources for efficiency of microbial protein synthesis. In: In vitro screening of plant resources for extra-nutritional attributes in ruminants, Nuclear and related methodologies (Eds.). Springer, New York, USA. pp. 106-144.
McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., and Morgan, C.A. 2002. Animal Nutrition (6nd Ed.). United Kingdom: Longman. pp. 451-464.
McDonald, P., Henderson, A.R., and Heren, S.J.E. 1991. The Biochemistry of Silage (2nd Ed.). United Kingdom:  Chalcombe Publication.
Menke, K.H., and Steingass, H. 1988. Estimation of energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28: 7-55.
Mills, J.A., and Jr., L.K. 2002. The effect of delayed filling and application of a propionic acid-based additive on the fermentation of barley silage. Journal of Dairy Science 85 (8): 1969-1975.
Ojeda, F., and Montejo, I. 2001. Conservacio´n de morera (Morus alba) como ensilaje (Storage of morera (Morus alba) as silage). I. Efecto sobre los compuestos nitrogenados. Pastos y Forrajes 24: 147-155.
Ørskov, E.R., and McDonald, I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science 92: 499-503.
Rodriguez, M.P., Mariezcurrena, M.D., Mariezcurrena, M.A., Lagunas, B.C., Elghandour, M.M.Y.  Kholif, A.M., Kholif, A.E., Almaraz, A.M., and Salem, A.Z.M. 2015. Influence of Live Cells or Cells Extract of Saccharomyces Cerevisiae on in vitro gas production of a total mixed ration. Italian Journal of Animal Science 14 (4): 590-595.
Salem, A.Z.M., Kholif, A.E., Elghandour, M.M.Y., Hernandez, S.R., Dominguez-Vara, I.A., and Mellado, M. 2014. Effect of increasing levels of seven tree species extracts added to a high concentrate diet on in vitro rumen gas output. Animal Science Journal 85 (9): 853-860.
Sallam, S.M.A., Bueno, I.C.S., Brigide, P., Godoy, P.B., Vittii, D.M.S.S., and Abdalla, A.L. 2009.  Efficiency of eucalyptusoil on in vitro ruminal fermentation and methane production. Nutritional and Foraging Ecology of Sheep and Goats 85: 267-272.
SAS Institute INC. 2002. Sas user’s Guide: statistics. Statistical Analysis Systems Institute Inc. Cary NC.
Seidali Dolat-Abad, S., Khorvash, M., Ghorbani, G.R., and Mohammadzadeh, H. 2016. Effects of bacterial inoculants and absorbents on fermentation properties and chemical composition of fresh sugar beet pulp silage using laboratory silos. Iranian Journal of Animal Science Research 7 (4): 413-421. (In Persian with English Summary).
Serrano-Diaz, J., Sanchez, A.M., Martinez-Tome, M., Winterhalter, P., and Alonso, G.L. 2013. A contribution to nutritional studies on Crocus sativus flowers and their value as food. Journal of Food Composition and Analysis 31 (1): 101-108.
Sniffen, C.J., O’Connor, J.D., Van Soest, P.J., Fox, D.G., and Russell, J.B. 1992. A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. Journal of Animal Science 70 (11): 3562-3577.
Sucu, E., Kalkan, H., Canbolat, O., and Filya, I. 2016. Effects of ensiling density on nutritive value of maize and sorghum silages. Revista Brasileira de Zootecnia 45 (10): 596-603.
Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B., and France, J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feed. Animal Feed Science and Technology 48: 185-197.
Tian, J., Yu, Y., Yu, Z., Shao, T., Na, R., and Zhao, M. 2014. Effects of lactic acid bacteria inoculants and cellulase on fermentation quality and in vitro digestibility of Leymus chinensis silage. Grassland Science 60: 199-205.
Vercoe, E.P., Makkar, H.P.S., and Schlink, A.C. 2010. In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies (Ed.). In: In vitro screening of feed resources for efficiency of microbial protein synthesis. New York, Springer, pp. 106-144.
Zhang, T., Li, L., Wang, X., Zeng, Z., Hu, Y., and Cui, Z. 2009. Effect of Lactobacillus buchneri and Lactobacillus plantarum on fermentation, aerobic stability, bacteria diversity and ruminal degradability of alfalfa silage. World Journal of Microbiology and Biotechnology 25: 965-971.