بررسی اثرات زیست‌محیطی نظام‌های تولید زعفران (Crocus sativus L.) تحت تأثیر اندازه زمین با استفاده از ارزیابی چرخه حیات

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشیار گروه اگروتکنولوژی، دانشکده کشاورزی دانشگاه فردوسی مشهد

2 استاد گروه اگروتکنولوژی، دانشکده کشاورزی دانشگاه فردوسی مشهد

3 دانشجوی دکتری گروه اگروتکنولوژی، دانشکده کشاورزی دانشگاه فردوسی مشهد

4 استادیار گروه زیست فناوری موادغذایی، پژوهشکده فناوری های پیشرفته مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

10.22048/jsat.2018.129172.1296

چکیده

ارزیابی چرخه حیات (LCA) راهکاری شناخته شده و دقیق برای مقایسه اثرات زیست­محیطی فعالیت­های مختلف شامل مدیریت نظام­های کشاورزی است. از آنجا که نوع نهاده­هادر کشاورزی نقش مهمی در بروز آلودگی­های زیست­محیطی و انتشار گازهای گلخانه­ای دارد، LCA به طور گسترده­ای برای ارزیابی این اثرات در محصولات زراعی مورد استفاده قرار می­گیرد. هدف این مطالعه، بررسی اثرات زیست محیطی نظام­های تولید زعفران در استان خراسان رضوی تحت تأثیر اندازه زمین (کمتر از 5/0، 1-5/0 و بیشتر از 1 هکتار) با استفاده از LCA بود. نهاده­های مصرفی طی سال­های اول تا ششم با استفاده از پرسشنامه (13 مزرعه از هر اندازه زمین) جمع­آوری شد. LCA بر اساس روش ISO14044، در چهار گام شامل مشخص­سازی اهداف و حوزه عمل، ممیزی چرخه حیات، ارزیابی تأثیر چرخه حیات و تلفیق، نتیجه­گیری و تفسیر نتایج محاسبه گردید.واحد کارکردی معادل یک کیلوگرم گل در نظر گرفته شد. گروه­های تأثیرمورد مطالعه شامل گرمایش جهانی، اسیدی شدن و اوتریفیکاسیون (در محیط­های خشکی و آبی) بود. در آخرین مرحله، شاخص بوم­شناخت (Ecox) محاسبه شد. برای سنجش قابلیت روایی پرسشنامه، ضریب آلفای کرونباخ محاسبه گردید. نتایج نشان داد که ضریب آلفای کرونباخ برابر با 84%=α محاسبه گردید. میانگین پتانسیل گروه­های تأثیر گرمایش جهانی، اسیدی شدن، اوتریفیکاسیون در محیط­های آبی و خشکی به ترتیب 41/53±41/115 کیلوگرم معادل CO2، 16/0±35/0 کیلوگرم معادل SO2، 27/0±58/0 کیلوگرم معادل NOx و 09/0±20/0 کیلوگرم معادل PO4 به ازای یک کیلوگرم گل محاسبه شد. بیشترین سهم انتشار گازهای گلخانه­ای در گروه تأثیر گرمایش جهانی مربوط به CH4 بود. بالاترین سهم انتشار آلاینده­ها در گروه­های تأثیر اوتریفیکاسیون آبی و خشکی و اسیدی شدن به NH3 اختصاص داشت. به­طور کلی، نتایج نشان داد که اندازه زمین، میزان مصرف نهاده­ها و اثرات ­زیست محیطی را در واحد عملکرد گل تحت تأثیر قرارداد و گروه­های اوتریفیکاسیون و گرمایش جهانی حساسیت بیشتری نسبت به شدت فشرده­سازی تحت تأثیر اندازه زمین دارند، بنابراین افزایش کارایی مصرف منابع، یکی از رویکردهای مناسب برای کاهش اثرات زیست محیطی همگام با بهبود عملکرد اقتصادی در واحد سطح است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of environmental impacts of saffron (Crocus sativus L.) agroecosystems in the Khorasan province affected as field size by using life cycle assessment

نویسندگان [English]

  • Soroor Khorramdel 1
  • Mahdi Nassiri Mahallati 2
  • Fatemeh Moallem Banhangi 3
  • Abdollah Mollafilabi 4
1 Associate Professor, Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad
2 Professor, Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad
3 Ph.D. student, Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad
4 Assistant Professor, Research Institute of Food Science and Technology
چکیده [English]

Life cycle assessment (LCA) is a well-known and accurate methodology for comparison of environmental impacts of activities including different agricultural management systems. Since the used inputs have an important role in environmental pollution and greenhouse gas emissions, LCA have been extensively applied for crop species. This study was conducted to assess the environmental impact of saffron production systems based on field area (<0.5, 0.5-1 and >1 ha) in the Khorasan-e Razavi province using LCA methodology. The amounts of utilized agricultural inputs from the first year to the sixth year were collected by means of a questionnaire (13 fields from each area). In this regard, four phases, which are goal and scope definition, inventory analysis, impact assessment and interpretation, were designed to assess life cycle index with ISO14044 procedure. Functional unit were considered as one kg of flower. Three main categories as impacts on environment including global warming, acidification and eutrophication (terrestrial and aquatic) were defined. Finally, an index -called environmental index (EcoX) was calculated. Cronbach's alpha was used assessing the reliability of the questionnaire. The results showed that the Cronbach's alpha was computed with α=%84. The average values for global warming, acidification and eutrophication terrestrial and aquatic categories were calculated with115.41±53.41 kg CO2 equiv. / one kg flower yield, 0.35±0.16 kg SO2 equiv./ one kg flower yield, 0.58±0.27 kg NOx equiv./ one kg flower yield and 0.20±0.09 kg PO4 equiv./ one kg flower yield, respectively. The largest share of greenhouse gas emissions in the global warming category was related to CH4. The maximum emission of pollutants in acidification, eutrophication terrestrial and eutrophication aquatic categories was related to NH3. The results revealed that, field area affected the amounts of utilized agricultural inputs and environmental impacts as flower yield. Eutrophication and climate change categories had more sensitivity and affected as intensification based on field area. Therefore, one of the appropriate approaches to mitigate and decline the environmental impacts of agricultural production is achieving higher economical yield per unit of area by increasing resource use efficiency.

کلیدواژه‌ها [English]

  • Greenhouse gas emissions
  • Intensification
  • life cycle assessment
  • Resource use efficiency
  • Climate change

Al-Kaisi, M.M., and Yin, X. 2005. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. Journal of Environmental Quality 34: 437–445.

Bacenetti, J., Fusi, A., Negri, M., Guidetti, R., and Fiala M. 2014. Environmental assessment of two different crop systems in terms of biomethane potential production. Science of the Total Environment 466–467: 1066-1077.

Bachmaier, J., Effenberger, M., and Gronauer, A. 2010. Greenhouse gas balance and resource demand of biogas plants in agriculture. Engineering in Life Sciences 10: 560–569.

Banaeian, N., Omid, M., and Ahmadi, H. 2011. Energy and economic analysis of greenhouse strawberry production in Tehran province of Iran. Energy Conversion and Management 52: 1020-1025.

Barker-Reid, F., Gates, W.P., Wilson, K., Baigent, R., Galbally, I.E., Meyer, C.P., Weeks, I.A., and Eckard, R.J., 2005. Soil nitrous oxide emission from rainfed wheat in SE Australia. In: A. van Amsted (Ed.). Non-CO2greenhouse gases (NCGG-4). Utrecht, the Netherlands: Mill Press.

Biswas, W.K., Barton, L., and Carter, D. 2008. Global warming potential of wheat production in Western Australia: A life cycle assessment. Water and Environment Journal 22: 206–216.

Bojacá, C.R., Wyckhuys, K.A.G., and Schrevens, E. 2014. Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. Journal of Cleaner Production 69: 26-33.

Brentrup, F., Küsters, J., Kuhlmann, H., and Lammel, J. 2001. Application of the life cycle assessment methodology toagricultural production: an example of sugar beet productionwith different forms of nitrogen fertilisers. European Journal of Agronomy 14: 221–233.

Brentrup, F., Küsters, J., Kuhlmann, H., and Lammel, J. 2004a. Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy 20 (3): 247–264.

Brentrup, F., Küsters, J., Lammel, J., Barraclough, P., and Kuhlmann, H. 2004b. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology: II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy 20 (3): 265–279.

Carozzi, M., Ferrara, R.M., Rana, G., and Acutis, M. 2013. Evaluation of mitigation strategies to reduce ammonia losses from slurry fertilisation on arable lands. Science of the Total Environment 449: 126–133.

CDIAC. 2013. Global Fossil-fuel CO2 Emissions. Carbon Dioxide Information Analysis Center.

Charles, R., Jolliet, O., Gillard, G., and Pellet, D. 2006. Environmental analysis of intensity level in wheat production using life cycle assessment. Agriculture, Ecosystems and Environment 113: 216-225.

Cronbach, L.J. 1951. Coefficient alpha and the internal structure of tests. Psychometrika 16 (3): 297-334.

Crutzen, P.J. 1981. Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide. In: C.C. Delwiche (Ed.), Denitrification, Nitrification, and Atmospheric Nitrous Oxide (p. 17–44). New York: Wiley.

Dale, V.H., and Polasky, S. 2007. Measures of the effects of agricultural practices on ecosystem services. Ecological Economics 64: 286-296.

Dyer, J.A., and Desjardins, R.L. 2003. The impact of farm machinery management on greenhouse gas emissions from Canadian agriculture. Journal of Sustainable Agriculture 20: 59–74.

ECETOC. 1994. European Chemical Industry Ecology and Toxicology Centre (ECETOC). 1994. Ammonia Emissions to Air in Western Europe. Technical Report No. 62. ECETOC, Brussels.

Eckert, H., Breitschuh, G., and Sauerbeck, D. 1999. Kriterien einer umweltverträglichen Landbewirtschaftung (KUL)-ein Verfahren zur ökologischen Bewertung von Landwirtschaftsbetrieben (Criteria of Environmentally friendly land use (KUL)-a method for the environmental evaluation of farms). Agriculture Biotechnology Research 52: 57-76. (In Persian with English Summary).

Esmaeilpour, B., Khorramdel, S., and Amin Ghafouri, A. 2015. Study of environmental impacts for potato agroecosystems of Iran by using life cycle assessment (LCA) methodology. Electronic Journal of Crop Production 8 (3): 199-224. (In Persian with English Summary).

Fageria, N.K. 2009. The Use of Nutrients in Plants. Taylor and Francis Group, CRC Press, 430 p.

Fallahpour, F., Aminghafouri, A., Ghalegolab Behbahani, A., and Bannayan, M. 2012. The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environment, Development and Sustainability 14: 979-992.

Finnveden, G., Hauschild, M.Z., Ekvall, T., and Suh, S. 2009. Recent developments in life cycle assessment. Journal of Environmental Management 91 (1): 1-21.

Garrigues, E., Corsona, M.S., Angers, D.A., van der Werfa, H.M.G., and Walter, C.  2011. Soil quality in Life Cycle Assessment: Towards development of an indicator. Ecological Indicators 18: 434–442.

Gasol, C.M., Gabarrell, X., Anton, A., Rigola, M., Carrasco, J., Ciria, M.J., and Rieradevall, J. 2007. Life cycle assessment of a Brassicacarinata bioenergy cropping system in southern Europe. Biomass and Bioenergy 31: 543-555.

Giampietro, M., Cerretelli, G., and Pimentel, D. 1992. Energy analysis of agricultural ecosystem management: human return and sustainability. Agriculture, Ecosystems and Environment 38: 219–244.

Guinée, J. 1996. Data for the Normalization Step within LifeCycle Assessment of Products. CML Paper no. 14 (revisedversion). CML (Centre of Environmental Science), Leiden University.

Guinée, J.B. 2001. Life Cycle Assessment: An Operational Guide to the ISO Standards. Centre of Environmental Science, Leiden University, Leiden.

Haas, G., Wetterich, F., and Köpke, U. 2001. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agriculture, Ecosystems and Environment 83V (1–2): 43-53.

Hanley, N., Whitby, M., and Simpson, I. 1999. Assessing the success of agri-environmental policy in the UK. Land Use Policy 16: 67-80.

IEA. 2013. CO2 Emissions from Fuel Combustion Highlights. International Energy Agency.

Iriarte, A., Rieradevall, J., and Gabarrell, X. 2010. Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. Journal of Cleaner Production 18V (4): 336-345.

ISO (International Organization for Standardization). 2006. ISO 14040: 2006 (E) Environmental Management– Life Cycle Assessment– Principles and Framework.

Kafi, M., Rashed Mohasel, M.H., Koocheki, A., and Mollafilabi, A. 2002. Saffron, Production and Processing. Zaban va Adab Publications, Iran 276 p. (In Persian).

Kamkar, B., and Mahdavi Damghani, A.M. 2008. Principle of Sustainable Agriculture. Jihad Daneshgahi of Mashhad Press, Mashhad, Iran. (In Persian).

Khorramdel, S., Abolhassani, L., and Azam Rahmati, E. 2016. Environmental impacts assessment of saffron agroecosystems using life cycle assessment methodology: (Case study: Torbat-e Heydarieh and Ghaen counties). Journal of Saffron Research 4 (2): 229-248. (In Persian with English Summary).

Khorramdel, S., Ghorbani, R., and Amin Ghafori, A. 2015. Comparison of environmental impacts for dryland and irrigated barley agroecosystems by using Life Cycle Assessment (LCA) methodology. Journal of Plant Production Research 22 (1): 243-264. (In Persian with English Summary).

Khorramdel, S., Rezvani Moghaddam, P., and Amin Ghafori, A. 2014. Evaluation of environmental impacts for wheat Agroecosystems of Iran by using Life Cycle Assessment methodology. Cereal Research 4 (1): 27-44. (In Persian with English Summary).

Khorramdel, S., Rezvani Moghaddam, P., and Amin Ghafori, A. 2018. Economic evaluation of agroecosystem services of saffron in Khorasan Razavi province. Journal of Saffron Agronomy and Technology 6 (1): 73-89. (In Persian with English Summary).

Khorramdel, S., Shabahang, J., and Amin Ghafouri, A. 2017. Evaluation of environmental impacts for rice agroecosystems using life cycle assessment (LCA). Iranian Journal of Applied Ecology 5 (18): 1-14. (In Persian with English Summary).

Khoshnevisan, B., Rafiei, S., Omid, M., Keyhani, A., and Movahedi, M. 2013. Assessing of energy indices and environmental impacts of potato production (Case study: Fereydoonshahr region, Isfahan province). Iranian Journal of Biosystems Engineering 44 (1): 57-66. (In Persian with English Summary).

Khoshnevisan, B., Rajaeifar, M.A., Clark, S., Shamahirband, S., Anuar, N.B., Mohd Shuib, N.L., and Gani, A. 2014. Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling. Science of the Total Environment 481: 242–251.

Koocheki, A. 2004. Indigenous knowledge in agriculture with particular reference production in Iran. Acta Horticulture p. 175-182. (In Persian).

Kopiñski, J. 2012. Realization of environmental and economic objectives by the farms of various specialization directions (in Polish). Problems Agricultural engineering 2: 37-45.

Kowalski, Z., Kulczycka, J., and Góralczyk, M. 2007. Environ- mental Life Cycle Assessment of the Manufacturing Processes (LCA) (in Polish). PWN Press, Warsaw, Poland.

Kronvang, B., Rubak, G.H., and Heckrath, G. 2009. International phosphorus workshop: Diffuse phosphorus loss to surface water bodies- risk assessment, mitigation options, and ecological effects in river basins. Journal of Environmental Quality 38: 1924–1929.

Lal, R. 2004. Carbon emission from and farm operations. Environment International 30: 981-990.

Meisterling, K., Samaras, C., and Schweizer, V. 2009. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. Journal of Cleaner Production 17: 222–230.

Mirbagheri, E., Abbaspour, A., Rohani, A.,  and Ghorbani, H. 2012. Evaluation of phosphorus status in some potato fields of Mojen region in Semnan Province. Iranian Journal of Soil Research 26V (3): 235-243. (In Persian with English Summary).

Mollafilabi, A., and Shoorideh, H. 2009. The new methods of saffron production. 4th National Festival of Saffron, Khorasan- Razavi, Iran, 27-28 October 2009. (In Persian).

Monti, A., Fazio, S., and Venturi, G. 2009. Cradle-to-farm gate life cycle assessment in perennial energy crops. European Journal of Agronomy 31: 77-84.

Moudrý, J., Jelínková, Z., Plch, R., Moudrý, J., Konvalina, P., and Hyšpler, R. 2013. The emissions of greenhouse gases produced during growing and processing of wheat products in the Czech Republic. Journal of Food, Agriculture and Environment 11 (1): 1133-1136.

Nassiri Mahallati, M., and Koocheki, A. 2017. Trend analysis of nitrogen use and productivity in cereal production systems of Iran. Journal of Agroecology 9 (2): 360-378. (In Persian with English Summary).

Nassiri, S.M., and Singh, S. 2009. Study on energy use efficiency for paddy crop using Data Envelopment Analysis (DEA) technique. Applied Energy 86: 1320-1325.

Nemecek, T., Dubois, D., Huguenin-Elie, O., and Gaillard, G. 2010. Life cycle assessment of Swiss farming systems: I. Integrated and organic farming. Agriculture Systems 104: 217-232.

Nikkhah, A., Emadi, B., and Firouzi, S. 2015. Greenhouse gas emissions footprint of agricultural production in Guilan province of Iran. Sustainable Energy Technologies and Assessments 12: 10–14.

Oberndorfer, U., and Rennings, K. 2006. The impacts of the European Union emissions trading scheme on competitiveness in Europe. Center for European Economic Research (ZEW), Mannheim. Available at: ftp://ftp.zew.de/pub/zew-docs/dp/dp06051.pdf

Oglethorpe, D., Edgerton, N., and Hanley, N. 2000. Modeling the demand and supply of environmental goods for ancient public good provision. Paper presented at Annual Meeting of the Agricultural Economics Society 14-17 April 2000, Manchester.

Pishgar-Komleh, S.H., Ghahderijani, M., and Sefeedpari, P. 2012. Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner Production 33: 183–191.

Pishgar-Komleh, S.H., Keyhani, A., Rafiee, S., and Sefeedpari, P. 2011a. Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy 36: 3335–3341.

Pishgar-Komleh, S.H., Sefeedpari, P., and Rafiee, S. 2011b. Energy and economic analysis of rice production under different farm levels in Guilan province of Iran. Energy 36: 5824-5831.

Rahimizadeh, M., Madani, H., Rezadoust, S., Mehraban, A., and Marjani, A. 2007. Analysis of energy in agroecosystems and methods of increasing energy efficiency. In: The 6th National Energy Congress. 12-13 June, 2007. Available at: http://Iranenergy.org.ir/sixth/new3/final_schedule.pdf

Rao, P.S.R.S. 2000. Sampling methodologies with applications, Florida: Chapman and all/CRC Press. ISBN: 1- 58488214-X.

Rathke, G.W., and Diepenbrock, W. 2006. Energy balance of winter oilseed rape (Brassica napus L.) cropping as related to nitrogen supply and preceding crop. European Journal of Agronomy 24: 35-44.

Reicosky, D.C., Kemper, W.D., Langdale, G.W., Douglas, Jr. C.L., and Rasmussen, P.E. 1995. Soil organic matter changes resulting fromtillage and biomass production. Journal of Soil and Water Conservation 50: 253-261

Riemersma, S., Little, J., Ontkean, G., and Moskal-Hébert, T. 2006. Phosphorus Sources and Sinks in Watersheds: A Review. Alberta Soil Phosphorus Limits Project.

Romero-Gámez, M., Audsley, E., and Suárez-Rey, E.M. 2014. Life cycle assessment of cultivating lettuce and escarole in Spain. Journal of Cleaner Production 73: 193-203.

Romero-Gomez, M., Suarez-Rey, E.M., Anton, A., Castilla, N., and Soriano, T. 2012. Environmental impact of greenhouse and open-field cultivation using a life cycle analysis: the case study of green bean production. Journal of Cleaner Production 28: 63-69.

Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., Nakamura, N., and Shiina, T. 2009. A review of life cycle assessment (LCA) on some food products. Journal of Food Engineering 90 (1): 1-10.

Roy, P., Shimizu, N., and Kimura, T. 2005. Life cycle inventory analysis of rice produced by local processes. Journal of the Japanese Society of Agricultural Machinery 67 (1): 61–67.

Russo, G., and De Lucia, B. 2008. Environmental evaluation by means of LCA regarding the ornamental nursery production in rose and sowbread greenhouse cultivation. Acta Horticulturae 801: 1597-1604.

Saborbilandi, A., Vadiei, A.R. 2007. The economic analysis of saffron and its impact on farmers income, The 6th National Conference on Agricultural Economic, Iran. (In Persian).

Seyyedan, S.M. 2004. Investigation of factors affecting on technical inefficiency of garlic producers: A case study in Hamedan province. Pajouhesh and Sazandegi (64): 74-79. (In Persian with English Summary).

Signor, D., Eduardo, C., and Cerri, P. 2013. Nitrous oxide emissions in agricultural soils: a review. Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics), Goiânia 43 (3): 322-338. (In Persian with English Summary).

Skowroñska, M., and Filipek, T. 2014. Life cycle assessment of fertilizers: a review. International Agrophysics 28: 101-110.

Syswerda, S.P. 2009. Ecosystem services from agriculture across a management intensity gradient in Southwest Michigan. PhD Thesis, Michigan State University.

Teimouri, I., Salarvandian, F., and Ziari, K. 2014. The ecological footprint of carbon dioxide from fossil fuels in Shiraz. Journal of Geographical Research 59 (1): 193-204.  

Tzilivakis, J., Warner, D.J., May, M., Lewis, K.A., and Jaggard, K. 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems 85 (2): 101-119.

Van der Hoek, K.W., and Van Schijndel, M.W. 2006. Methane and nitrous oxide emissions from animal manure management 1990–2003. Background document on the calculation method for the Dutch National Inventory Report. RIVM and MNP (Netherlands Environmental Assessment Agency), Bilthoven, The Netherlands, p. 1–50.

Wackernagel, M., Monfreda, C., Moran, D., Wermer, P., Goldfinger, S., Deumling, D., and Murray, M. 2005. National Footprint and Biocapacity Accounts 2005: The Underlying Calculation Method. Global Footprint Network, Oakland.

Whalen, J.K., and Chang, C. 2002. Phosphorus sorption capacities of calcareous soils receiving cattle manure applications for 25 years. Communications in Soil Science and Plant Analysis 33: 1011-1026.

Zohary, D., and Hopf, M. 1994. Domestication of Plants in the Old World. Second Ed. Clarendon Press, Oxford, p. 189-190.

Zolfi Bavariani, M., and Nouruzi, M. 2010. Effect of organic matter on residual phosphorus recovering in a calcareous soil. JWSS- Isfahan University of Technology 14 (52): 87-98. (In Persian with English Summary).