بررسی اثر پلاسمای سرد بر ویژگی های میکروبی و شیمیایی زعفران

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 استاد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 دانشیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

4 دانشجوی دکتری گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

10.22048/jsat.2019.112244.1276

چکیده

زعفران گران­ترین محصول کشاورزی جهان می­باشد و ایران بزرگترین تولیدکننده زعفران در جهان است، آلوده­شدن زعفران در مراحل مختلف فرایند تولید، علاوه بر کاهش کیفیت منجر به کاهش اعتبار در بازار جهانی و صادرات می­شود. لذا انتخاب یک روش مناسب جهت غیرفعال­سازی فلور میکروبی زعفران ضرورت دارد. در بین روش­های مختلفی که برای غیرفعال کردن میکروب­ها استفاده می­شوند، پلاسمای سرد به علت وجود مزایای بالقوه بی­شمار از قبیل طبیعت غیرسمی، هزینه­های عملیاتی پایین، کاهش قابل توجه مصرف آب طی فرایند­های ضد عفونی، و امکان کاربرد آن برای محصولات غذایی متنوع، توجه زیادی را به خود جلب کرده است. پلاسما حالتی از گاز یونیزه شده شامل یون­ها، الکترون، اشعه ماورابنفش و گونه­های واکنش مانند رادیکال­ها، اتم­ها و مولکول­های بر انگیخته است که قادر به غیرفعال­سازی میکروارگانیسم­ها می­باشد. در این پژوهش پلاسمای سرد با استفاده از دو نوع گاز شامل نیتروژن و هوا تولید و اثر تابش پلاسما در مدت زمان های صفر، 3، 6، 9 و 12 دقیقه بر ویژگی­های شیمیایی و میکروبی (باکتری اشرشیاکلی، انتروکوکوس فکالیس، کپک و مخمر) زعفران بررسی گردید. نتایج حاصل از این پژوهش نشان داد اثر میکروب کشی پلاسمای نیتروژن نسبت به پلاسما هوا کمتر بوده و با افزایش زمان تابش پلاسما میزان غیرفعال سازی میکروارگانیسم­ها افزایش یافت. حداکثر کاهش بار میکروبی در زمان 12 دقیقه در ولتاژ 18 کیلوولت مشاهده شد و جمعیت باکتری اشرشیاکلی، انتروکوکوس فکالیس، کپک و مخمر به ترتیب به میزان 2/69، 2/48، 1/95 سیکل لگاریتمی کاهش یافت. نتایج همچنین نشان داد که افزایش زمان تابش پلاسما، میزان کروسین، پیکروکروسین و سافرانال را به طور معنی­دار (0/50˂p)  کاهش داد. میزان کاهش کروسین، سافرانال و پیکروکروسین در زمان 12 دقیقه به ترتیب 6/01، 4/04، 5/44 درصد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Cold plasma on microbial and chemical properties of Saffron

نویسندگان [English]

  • Maryam Akbarian 1
  • Fakhri Shahidi 2
  • Mohammad Javad Varidi 3
  • Arash Koocheki 2
  • sahar roshanak 4
1 MSc Student, Department of Food Science & Technology, Ferdowsi University of Mashhad, Mashhad, Iran
2 Professor, Department of Food Science & Technology, Ferdowsi University of Mashhad, Mashhad, Iran
3 Associate Professor,Department of Food Science & Technology, Ferdowsi University of Mashhad, Mashhad, Iran
4 Ph.D Student, Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad
چکیده [English]

Saffron is the most expensive agricultural product in the world and Iran is the largest saffron producer in the world. Saffron contamination in different stages of the production process, in addition to quality loss leads to reducing credit in the global market and exporting. Therefore, it is necessary to select an appropriate method for inactivation the microbial flora of saffron. Among the common methods that used to inactivation the microorganisms, cold plasma is due to the potential benefits such as non-toxic nature, low operational costs, and a significant reduction in water consumption during decontamination, and the possibility of its use for a variety of food products has attracted much attention. Plasma is a state of ionizing gas, including ions, electrons, ultraviolet rays, and reactive species such as radicals, atoms and molecules that can ignite, which can inactivate microorganisms. in this research, cold plasma was produced using two types of gas including nitrogen and air, and the effect of plasma radiation at 0, 3, 6, 9 and 12 minutes on the chemical and microbial (Escherichia coli, Enterococcus faecalis, Mold and Yeast) properties of saffron were investigated. The results of this study showed that germicidal effect of nitrogen plasma was lower than air plasma and the plasma exposure time had a significant effect on reduction of microbial load and by increasing the time of plasma exposure, the inactivation of microorganisms increased. The maximum microbial reduction was observed in 12 minutes. Maximum reduction in microbial load was observed at 12 minutes and 18 kilovolt voltage, which reduced the population of Escherichia coli, Enterococcus faecalis, mold and yeast by 2/69, 2/48, 1/95 log cycle respectively, However, with increasing radiation time, the amount of crocin, picocrocin and safranal decreased (p˂0.05). Reduction of crocin, safranal and picocrocin in 12 minutes was 6/01, 4/04, 5/44%, respectively.

کلیدواژه‌ها [English]

  • Microbial contamination of saffron
  • cold plasma
  • picocrocin
  • Safranal
  • Crocin
Aghdaie, S.F.A., and Roshan, J. 2015. Investigating effective factors on Iran's saffron exportation. International Review of Management and Business Research 4 (2): 590-600.
Akbari, M., Haddad Khadaparast, M.H., and Hemati Kakhki, A. 2009. Effects of ozone treatment on microflora of dried saffron and its living larvae. In III International Symposium on Saffron: Forthcoming Challenges in Cultivation. Research and Economics 850: 231-234.
Amini, M., and Ghoranneviss, M. 2016. Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT-Food Science and Technology 73: 178-184.
Amini, M., Ghoranneviss, M., and Abdijadid, S. 2017. Effect of cold plasma on crocin esters and volatile compounds of saffron. Food Chemistry 235: 290-293.
Atefi, M., Taslimi, A., Hassas, M.R., and Mazloumi, M.T. 2004. Effects of freeze-drying processes on the qualitative characteristics of Iranian saffron. Iranian Journal of Food Sciences Technology 1 (2): 41-49.
Cahill, C., Claro, T., O'Connor, N.A., Cafolla, A.T., Stevens, N., Daniels, S., and Humphreys, H. 2014. Cold air plasma to decontaminate inanimate surfaces of the hospital environment. Applied and Environmental Microbiology 80 (6): 2004-2010.
Calvo, T., Álvarez-Ordóñez, A., Prieto, M., González-Raurich, M., and López, M. 2016. Influence of processing parameters and stress adaptation on the inactivation of Listeria monocytogenes by Non-Thermal Atmospheric Plasma (NTAP). Food Research International 89: 631-637.
Chiang, M.H., Wu, J.Y., Li, Y.H., Wu, J.S., Chen, S.H., and Chang, C.L. 2010. Inactivation of E. coli and B. subtilis by a parallel-plate dielectric barrier discharge jet. Surface and Coatings Technology 204 (21): 3729-3737.
Deng, X.T., Shi, J.J., and Kong, M.G. 2006. Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. Plasma Science 34 (4): 1310–1316.
Fernández, A., and Thompson, A. 2012. The inactivation of Salmonella by cold atmospheric plasma treatment. Food Research International 45 (2): 678-684.
Ghoddusi, H.B., and Glatz, B. 2003. Decontamination of saffron (Crocus sativus L.) by electron beam irradiation. In I International Symposium on Saffron Biology and Biotechnology 650: 339-344.
Gohari, A.R., Saeidnia, S., and Mahmoodabadi, M.K. 2013. An overview on saffron, phytochemicals, and medicinal properties. Pharmacognosy Reviews 7 (13): 61-67.
Hertwig, C., Leslie, A., Meneses, N., Reineke, K., Rauh, C., and Schlüter, O. 2017. Inactivation of Salmonella enteritidis PT30 on the surface of unpeeled almonds by cold plasma. Innovative Food Science and Emerging Technologies 44: 242-248.
Hertwig, C., Reineke, K., Ehlbeck, J., Erdoğdu, B., Rauh, C., and Schlüter, O. 2015. Impact of remote plasma treatment on natural microbial load and quality parameters of selected herbs and spices. Journal of Food Engineering 167: 12-17.
ISO 7954, 1987. Microbiology- General guidance for enumeration of yeasts and moulds- Colony count technique at 25 °C. International Organization for Standardization, Geneva.
ISO. 2010. Spices-saffron (Crocus sativus L.), ISO 3632-2, Part 2: Test methods, International. Organization for Standardization.
Jafari, S.M., Bahrami, I., Dehnad, D., and Shahidi, S.A. 2018. The influence of nanocellulose coating on saffron quality during storage. Carbohydrate Polymers 181: 536-542.
Jayasena, D.D., Kim, H.J., Yong, H.I., Park, S., Kim, K., Choe, W., and Jo, C. 2015. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: effects on pathogen inactivation and meat-quality attributes. Food Microbiology 46: 51–57.
Jouki, M., Khazaei, N., Kalbasi, A., Tavakolipour, H., Rajabifar, S., Sedeh, F.M., and Jouki, A. 2011. Study of γ irradiation and storage time on microbial load and chemical quality of persian saffron. World Academy of Science, Engineering and Technology 53 (7): 1154-1157.
Kim, J.E., Oh, Y.J., Won, M.Y., Lee, K.S., and Min, S.C. 2017. Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food Microbiology 62: 112-123.
Korachi, M., Gurol, C., and Aslan, N. 2010. Atmospheric plasma discharge sterilization effects on whole cell fatty acid profiles of Escherichia coli and Staphylococcus aureus. Electrostatics 68 (6): 508–512.
Kovačević, D.B., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Jambrak, A.R., and Herceg, Z. 2016. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry 190: 317-323.
Lacombe, A., Niemira, B.A., Gurtler, J.B., Fan, X., Sites, J., Boyd, G., and Chen, H. 2015. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology 46: 479-484.
Lee, H.J., Jung, H., Choe, W., Ham, J.S., Lee, J.H., and Jo, C. 2011. Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiology 28 (8): 1468-1471.
Lee, H., Kim, J.E., Chung, M.S., and Min, S.C. 2015. Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiology 51:74-80.
Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., and Ding, T. 2017. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control 75: 83-91.
Melnyk, J.P., Wang, S., and Marcone, M.F. 2010. Chemical and biological properties of the world's most expensive spice: Saffron. Food Research International 43 (8): 1981-1989.
Min, S.C., Roh, S.H., Niemira, B.A., Boyd, G., Sites, J.E., Uknalis, J., and Fan, X. 2017. In-package inhibition of E. coli O157: H7 on bulk Romaine lettuce using cold plasma. Food Microbiology 65: 1-6.
Misra, N.N., Tiwari, B.K., Raghavarao, K.S.M.S., and Cullen, P.J. 2011. Nonthermal plasma inactivation of food-borne pathogens. Food Engineering Reviews 3 (3-4): 159-170.
Mogul, R., Bol’shakov, A.A., Chan, S.L., Stevens, R.M., Khare, B.N., Meyyappan, M., and Trent, J.D. 2003. Impact of low-temperature plasmas on Deinococcus radiodurans and biomolecules. Biotechnol 19 (3): 776–783.
Nishime, T.M.C., Borges, A.C., Koga-Ito, C.Y., Machida, M., Hein, L.R.O., and Kostov, K.G. 2017. Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surface and Coatings Technology 312: 19-24.
Pankaj, S.K., Wan, Z., and Keener, K.M. 2018. Effects of Cold Plasma on Food Quality: A Review. Foods 7 (1): 4-21.
Pankaj, S.K., Wan, Z., Colonna, W., and Keener, K.M. 2017. Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture 97 (12): 4016-4021.
Pasquali, F., Stratakos, A.C., Koidis, A., Berardinelli, A., Cevoli, C., Ragni, L., Mancusi, R,. Manfreda, G., and Trevisani, M. 2016. Atmospheric cold plasma process for vegetable leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control 60: 552-559.
Polata, A., Motrescu, I., Nastuta, A., Creanga, D., and Popa, G. 2015. Plasma Jet impact on bacterial cultures. Romanian Journal of Biophysics 25 (4): 259-265.
Rajabi, H., Ghorbani, M., Jafari, S.M., Mahoonak, A.S., and Rajabzadeh, G. 2015. Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocolloids 51: 327-337.
Rodríguez, Ó., Gomes, W.F., Rodrigues, S., and Fernandes, F.A. 2017. Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT-Food Science and Technology 84: 457-463.
Rodriguez-Ruiz, V., Barzegari, A., Zuluaga, M., Zunooni-Vahed, S., Rahbar-Saadat, Y., Letourneur, D., and Pavon-Djavid, G. 2016. Potential of aqueous extract of saffron (Crocus sativus L.) in blocking the oxidative stress by modulation of signal transduction in human vascular endothelial cells. Journal of Functional Foods 26: 123-134.
Solís-Pacheco, J.R., Villanueva-Tiburcio, J.E., Peña-Eguiluz, R., González-Reynoso, O., Cabrera-Díaz, E., González-Álvarez, V., and Aguilar-Uscanga, B.R. 2013. Effect of plasma energy on the antioxidant activity, total polyphenols and fungal viability in chamomile (Matricaria chamomilla) and cinnamon (Cinnamomum zeylanicum). The Journal of Microbiology, Biotechnology and Food Sciences 2 (5): 2318 -2322.
Sureshkumar, A., Sankar, R., Mandal, M., and Neogi, S. 2010. Effective bacterial inactivation using low temperature radio frequency plasma. International Journal of Pharmaceutics 396 (1): 17-22.
Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., and Rocculi, P. 2016. Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science and Emerging Technologies 33: 225-233.
Torki-Harchegani, M., Ghanbarian, D., Maghsoodi, V., and Moheb, A. 2017. Infrared thin layer drying of saffron (Crocus sativus L.) stigmas: Mass transfer parameters and quality assessment. Chinese Journal of Chemical Engineering 25 (4): 426-432.
Wan, Z., Chen, Y., Pankaj, S.K., and Keener, K.M. 2017. High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of Salmonella enteritidis contamination on egg shell. LWT-Food Science and Technology 76 (A): 124-130.
Won, M.Y., Lee, S.J., and Min, S.C. 2017. Mandarin preservation by microwave-powered cold plasma treatment. Innovative Food Science and Emerging Technologies 39: 25-32.
Ziuzina, D., Patil, S., Cullen, P.J., Keener, K.M., and Bourke, P. 2014. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology 42: 109-116.